

Medicines & Healthcare products Regulatory Agency

Antigen ELISA for D and T vaccine potency – key features and considerations for validation and implementation

Paul Stickings and Laura Hassall MHRA

AFSA-HSI Webinar Virtual meeting Jan-2025

Potency assays used for routine vaccine QC

However, we should also acknowledge that, in many cases, the *in vivo* assays currently used in routine control strategies may not be the best tool for the purpose of providing assurance that new batches are consistent with those shown to be safe and effective in clinical studies (or in clinical use)

High variability of current *in vivo* potency assays limits their utility in a routine control strategy

Data from **Emmanuelle Coppens (Sanofi)**, presented at an IABS 3Rs & consistency approach in vaccine lot release testing conference 2015 Data presented at a previous meeting that provides an indication of the poor discriminative power of *in vivo* potency assays for D and T

Recent publications that quantify the high variability of current *in vivo* potency assays for DT and other vaccines

			\checkmark			
	Vaccine 39 (2021) 2506-2516				Vaccine 41 (2023) 5603-5613	
	Contents lists available at ScienceDirect	▼ Vaccine			Contents lists available at ScienceDirect	▼ Vaccine
222	Vaccine	SHE		2-52-52	Vaccine	ANTE
ELSEVIER	journal homepage: www.elsevier.com/locate/vaccine			ELSEVIER	journal homepage: www.elsevier.com/locate/vaccine	The second
Variability of in Pertussis (DTaP	a vivo potency tests of Diphtheria, Tetanus and acellular) vaccines	Check for speciality		Variability of polio, and me	in vivo potency assays of whole-cell pertussis, inactivated ningococcal B vaccines	Check for spidales
Coen A.L. Stalpers ^a . Coenraad F.M. Hend	^{b,c} , Irene A. Retmana ^a , Jeroen L.A. Pennings ^b , Rob J. Vandebriel ^b , driksen ^d , Arnoud M. Akkermans ^b , Marcel H.N. Hoefnagel ^{a,a}			Cerissa van Walst Kevin Markey ^b	ijn ^a , Stefan Verweij ^a , Rory Care ^b , Peter Rigsby ^b , Eli-Boaz Clapper ^c ,	

Development of a monoclonal antibody sandwich ELISA for the determination of antigen content and quality in diphtheria vaccines

Laura Hassall et. al. (2024) *Altex – Alternatives to Animal Experimentation*, 41(1), pp. 57-68 <u>https://doi.org/10.14573/altex.2305251</u>

Development of a monoclonal antibody sandwich ELISA for the quality control of human and animal tetanus vaccines

Laura Hassall et. al. (2024) *Altex – Alternatives to Animal Experimentation*, 41(4), pp. 588-604 <u>https://doi.org/10.14573/altex.2401171</u>

One of the main objectives for the **VAC2VAC** project was to develop **immunoassays** that could potentially **substitute** for current *in vivo* potency tests for the **routine QC** of DTaP vaccines

MHRA developed ELISAs for **Diphtheria** and **Tetanus**, both of which are published and demonstrate **proof of concept** for the approach:

- Wide applicability to different products (inc. vet tetanus)
 Specific, sensitive and precise
- Good evidence that the assays are likely to be **stability indicating**
- Successful transfer to other laboratories

Considerations for further validation and implementation..

The published "VAC2VAC" methods show proof of concept
 it was not within the scope of the VAC2VAC project to validate these assays

□ Validation will be done by product manufacturers

□ work is ongoing in some companies

□ Considerations for further validation and implementation include:

- Availability of critical reagents (antibodies)
- □ Choice of reference vaccine / antigen
- □ Need (or absence of need) for a desorption step

Availability of critical reagents (antibodies) Choice of reference vaccine / antigen Need (or absence of need) for a desorption step

Availability of critical reagents (antibodies)

- The "VAC2VAC" methods use well characterised monoclonal antibodies* for antigen capture and detection
 - In some cases, manufacturers may decide to characterise and use different monoclonal antibodies for some antigens (as well as other potential manufacturer specific adaptations to the published methods)
- The "VAC2VAC" antibodies are all available from the public catalogue at <u>https://nibsc.org/products.aspx</u>

Clone ID	Antigen
DT05	Diphtheria
Dim9	τοχοία
8E1-1H1.2.1	Tetanus
TT010	ισχοια
629E1	Pertussis
	ισχοία
F 52 102.2.1	
3-5	Pertactin
3-5 69K/16	Pertactin (69K)
3-5 69K/16 FHADETOX/6	Pertactin (69K) FHA
3-5 69K/16 FHADETOX/6 32-1	Pertactin (69K) FHA
 F32102.2.1 3-5 69K/16 FHADETOX/6 32-1 G10F8C3 	Pertactin (69K) FHA Fimbrae

Purity data for purified mAb (example)

7

* https://doi.org/10.1016/j.biologicals.2021.04.002 (tet mAbs)

https://doi.org/10.1016/j.biologicals.2020.12.002 (dip mAbs)

□Availability of critical reagents (antibodies)

□Choice of reference vaccine / antigen

Over a laboration of a labora

Choice of reference antigen / vaccine

- □ The VAC2VAC immunoassays provide a measure of *relative* antigen content (and quality) and a **stable**, **qualified reference antigen** (or vaccine) will be needed
 - A suitable reference antigen (or vaccine) will fulfil assay validity criteria for linearity and parallelism
- □ For D and T, there are a number of potential options that can be considered for use as a reference antigen (or vaccine) including:
 - □ WHO Standard (adjuvanted or non-adjuvanted)
 - □ *Manufacturer drug substance (adjuvanted or non-adjuvanted)*
 - □ Manufacturer drug product (adjuvanted same as product being tested)
 - □ Manufacturer drug product (adjuvanted "similar" to product being tested)

□ For D and T ELISAs we investigated this for a selection of different human vaccines..

Diphtheria mAb ELISA – evaluating reference antigen options

Deference entiren / vessine	Product (test sample) – <mark>whole vaccine</mark>							
Reference antigen / vaccine	1	2	3	4	5	6	7	
WHO IS Toxoid (non-adjuvanted)	×	×	~	×	×	×	×	
Manufacturer DS (non-adjuvanted)	×	× / ✓	~	× / ×	~	×	×	

Deference entiren /versine	Product (test sample) – <mark>whole vaccine</mark>							
Reference antigen / vaccine	1	2	3	4	5	6	7	
WHO IS Toxoid (adjuvanted)	~	~	✓	✓	~	~	~	
Manufacturer DS (adjuvanted)	~	~	✓	✓	~	~	~	
Manufacturer DP (specific)	~	~	✓	~	~	~	~	Adjuv
Manufacturer DP ("similar")	✓	✓	✓	✓	~	~	✓	

Indicates substantially different slope and/or asymptote

✓ Indicates comparable slope and/or asymptote

OFFICIAL-SENSITIVE

Tetanus mAb ELISA – evaluating reference antigen options

Deference entiren / vessing	Product (test sample) – whole vaccine							
Reference antigen / vaccine	1	2	3	4	5	6	7	
WHO IS Toxoid (non-adjuvanted)	~	~	~	×	×	× / ×	~	
Manufacturer DS (non-adjuvanted)	~	 ✓ 	~	~	~	× / ×	~	

Deference entiren / vessine	Product (test sample) – whole vaccine							
Reference antigen / vaccine	1	2	3	4	5	6	7	
WHO IS Toxoid (adjuvanted)	~	~	~	×	×	× / ✓	~	
Manufacturer DS (adjuvanted)	~	~	~	~	~	× / ✓	~	
Manufacturer DP (specific)	~	~	~	~	~	~	~	
Manufacturer DP ("similar")	~	~	~	~	~	~	~	

Indicates substantially different slope and/or asymptote

✓ Indicates comparable slope and/or asymptote

OFFICIAL-SENSITIVE

Choice of reference antigen / vaccine – conclusions

- □ Work performed in VAC2VAC project (albeit with a limited range of products) suggests that **more than one option will work in most cases**
 - Number of factors to consider for the choice of reference including availability, stability, qualification and maintenance over time
 - Need to be mindful of potential for "drift" when a reference has relatively short shelf life and requires relatively frequent replacement

Availability of critical reagents (antibodies)
Choice of reference vaccine / antigen

□Need (or absence of need) for a desorption step

Need (or absence of need) for a desorption step

- The target antigen in aluminium adjuvanted vaccines will be partially or completely adsorbed to the adjuvant
- Adsorption may affect epitope availability for mAb binding to some extent and whether this occurs and the extent to which this occurs will vary from product to product (and antigen to antigen) and will be dependent on the mAbs used in the assay
- We investigated this for the D and T ELISAs for a small selection of products during the VAC2VAC project (data is published)

How we estimate the amount of adsorbed and non-adsorbed antigen in a vaccine sample using the D or T ELISA

The difference between these two measurements tells us what proportion of the total antigen is detectable in the vaccine – i.e. without any pre-treatment (i.e. desorption) of the vaccine sample

Desorption step – data from VAC2VAC project

Manufacturer	Product	Adjuvant	Proportion of antigen detected (%) ^a	Degree of adsorption (%) ^b	TETANUS
HuA	dTaP	AIPO4	98	84	
	DTaP-IPV-HepB-Hib	AI(OH) ₃	88	12	
HuB	dTaP	AI(OH) ₃ + AIPO ₄	103	100	
	DTaP	AI(OH) ₃	59	100	

Manufacturer	Product	Adjuvant	Proportion of antigen detected (%) ^a	Degree of adsorption (%) ^b	DIPHTHERIA
HuA	dTaP	AIPO ₄	67	89	
	DTaP-IPV-HepB-Hib	AI(OH) ₃	56	58	
HuB	dTaP	AI(OH) ₃ + AIPO ₄	63	100	
	DTaP	AI(OH) ₃	43	100	

EXAMPLE: the highlighted product is a dTaP vaccine with hydroxide and phosphate aluminium adjuvant D and T toxoids are completely adsorbed

If we run the whole vaccine in the tetanus ELISA we detect all of the antigen that is in the vaccine If we run the whole vaccine in the diphtheria ELISA, we detect ~63% of the antigen that is in the vaccine

Desorption step – to desorb or not desorb?

- □ For products where you can demonstrate that all or nearly all of the antigen can be detected in the whole vaccine (i.e. without any desorption step) then it seems fairly clear that no desorption step is needed
- □ But at what threshold (i.e. at what % of antigen detection) will it be deemed necessary to include a desorption step?
 - Ultimately a question to be answered in validation and in discussion with NRA
- □ Key considerations during validation if a desorption step is necessary
 - □ Impact of the desorption process on antigen integrity
 - □ Impact of the desorption step on overall variability of the assay

Desorption step – to desorb or not desorb?

For products where you can demonstrate that all or nearly all of the antigen can be detected in the whole vaccine (i.e. without any desorption step) then it seems fairly clear that no desorption step is needed

MHRA performed limited studies during VAC2VAC
 But at v which suggest that, while adding a desorption step ad increases the total assay time (by ~24h), it does
 Utimation of significantly affect antigen integrity and does not significantly increase variability of the assay..

Key considerations during validation if a desorption step is necessary

Impact of the desorption process on antigen integrity

Impact of the desorption step on overall variability of the assay

Implications of a switch from in vivo to in vitro potency

- Compared to current (WHO/EP) potency tests for D and T, *in vitro* assays will not be calibrated and traceable to a common higher order standard
 - As discussed earlier, current WHO standards may be suitable for use in these assays, but will be used differently to how they are currently used for *in vivo* potency assays
 - Comparing potency of different products (through laboratory testing) will not be possible following a switch to *in vitro* immunoassays
 - Specifications are likely to be based on consistency and therefore product specific
- Where the "VAC2VAC methods" are taken up, manufacturers may make modifications prior to validation – even using different antibodies in some cases
 As discussed earlier, some products may require a desorption step, others may not

NCLs may therefore prefer to adopt and validate a "universal" protocol that can be applied to multiple products (provided it is shown to work for those products)

Final thoughts

Work done in the VAC2VAC project has highlighted the potential of using immunoassays to substitute for current *in vivo* potency tests for DTaP vaccines

□ Significant potential advantages in terms of:

- □ Precision of assays (improved discriminative power for monitoring batch quality)
- Significantly reduced time needed for testing each batch
- □ Removing the need for animals for routine potency testing

Moving to a new approach creates some challenges in terms of validation and implementation but experience from other similar efforts and the expertise available across different stakeholders means that these challenges can be met!

Acknowledgements

MHRA (UK)	Intravacc (Netherlands)	Sciensano (Belgium)		
Daniel Yara				
Laura Hassall	Amy Kogolman	Alexandre Dobly		
Paul Stickings	Amy Rogeiman	Antoine Francotte		
Peter Rigshy	Bernard Metz			
T Otor Higoby	Janny Westdijk	Maxime Vermeulen		
Rebecca Riches-Duit				
Robert Tierney				
Shalini Rajagopal				

+all industry partners in the VAC2VAC consortium; project coordinator and other consortium members

VAC2VAC project funded by the EU/EFPIA/Innovative Medicines Initiative 2 Joint Undertaking (Grant No. 115924)

http://www.imi.europa.eu/

http://www.vac2vac.eu/

www.nibsc.org

Further information

Queries related to assay, critical reagents and standards: <u>bacvac@mhra.gov.uk</u> VAC2VAC monoclonal antibodies and WHO reference materials from <u>https://nibsc.org/products.aspx</u>

Copyright information

© Crown copyright 2024

Produced by the Medicines and Healthcare products Regulatory Agency

You may re-use this information (excluding logos) with the permission from the Medicines and Healthcare products Regulatory Agency, under a Delegation of Authority. To view the guideline, visit <u>https://www.gov.uk/government/publications/reproduce-or-re-use-mhra-information/reproduce-or-re-use-mhra-information</u> or email: <u>copyright@mhra.gov.uk</u>.

Where we have identified any third-party copyright material you will need to obtain permission from the copyright holders concerned.

The names, images and logos identifying the Medicines and Healthcare products Regulatory Agency are proprietary marks. All the Agency's logos are registered trademarks and cannot be used without the Agency's explicit permission.