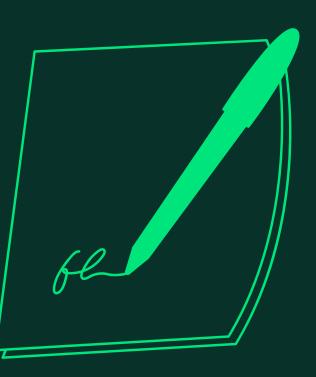
NGS for Adventitious viruses -Key resources for regulatory approach to HTS/NGS

Blandine de Saint-Vis, PhD Global MSAT BioAnalytics - Sr Scientist Boehringer Ingelheim Animal Health,

EDQM HTS Working Party



Introduction to NGS/HTS

02

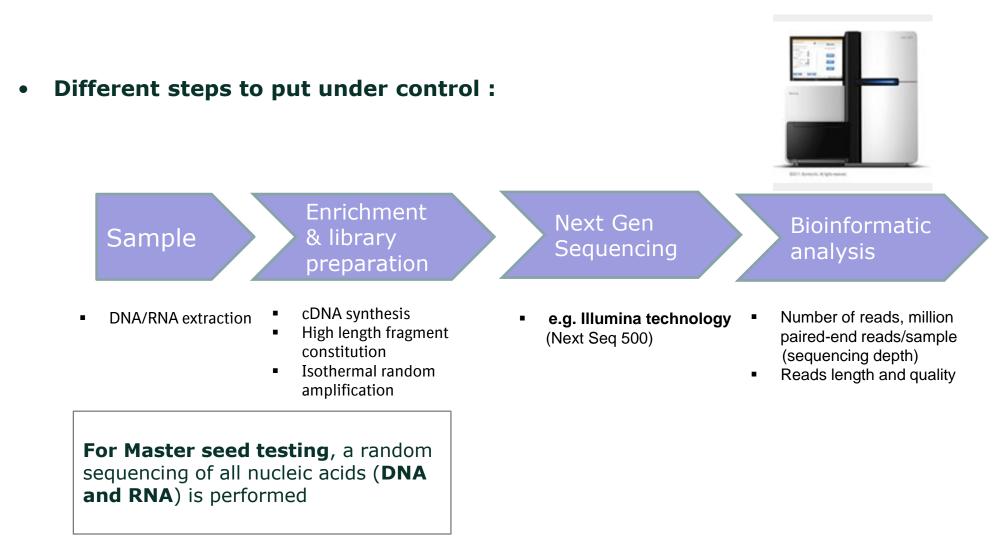
Extraneous agents testing for vaccines and viral vectors used as gene therapy products 03

NGS/HTS regulations: EurPh 2.6.41 new Chapter

Introduction to NGS/HTS

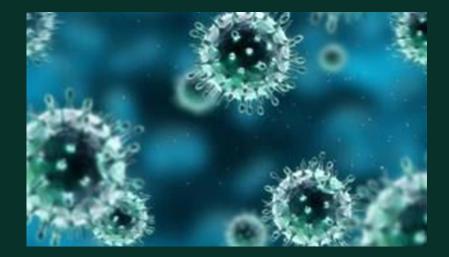
NGS (Next Generation Sequencing) = HTS (High Throughput Sequencing) = Massively Parallel Sequencing (MPS)

Boehringer Ingelheim


What is NGS (Next Generation Sequencing) or HTS (High Throughput technology)?

 Sequencing technology capable of sequencing all the nucleic acids extracted from a biological sample

- million of reads (sequences), from a library of nucleotide sequences, whether they come from DNA, RNA, or a mixture,


- extremely fast
- powerful tool for identifying known and unknown viruses
- large number of applications
- **several technologies** (Illumina, Ion torrent, Oxford Nanopore, PacBio ...):
- short reads and long reads
- Reads length from a hundreds of nucleotides to 50+ Kb
- Able to **detect any potential viral contaminants** in a biological sample

NGS/HTS sample preparation workflow

Current adventitious agents testing

Scope vaccine and viral vectors used as gene therapy products

Vaccine development & controls

Starting materials should be controlled for the **absence of contaminants**:

- Master cell bank, working cell bank
- Master virus seed (MSV), working seed
- Raw materials

Present assays to detect contaminants:

- Bacteria & fungi detection
- Mycoplasma assays
- Virus assays

These assays are submitted to regulatory agencies for vaccine registration.

- Challenges for veterinary vaccine seeds controls
 - Several species, huge diversity of viruses: cumbersome testing
- For seeds testing combination of :
 - **non-specific methods** (broad range of detection)
 - virus -specific methods (eg PCR)

Time-consuming

- Well-established method; high sensitivity on average
- Limitations of the method:

Boehringer

gelheim

- need of reliable neutralizing antibodies
- cell lines **may not be permissive** for some known or novel viruses

Complexicity of classical seeds purity testing

	Starting material	Cell bank	Viral Seeds	
6 M O N T H S	Adentitious Agents testing	MCB, WCB, MCB + 20 level Subculture (28 d) Subculture (14 d) General & specific testing Detector cell Cells sensitive to the target virus Fit for purpose sensitive test General testing (CPE, HA, HAD) Specific testing	MSV 10 doses Neutralization	MPLANT MITH
		Specific testing (IFI, ELISA, Molecular)		

AA = Adventitious agents or EA = Extragenous Agents (in PhEur)

The way to approach extraneous agents is changing

NEW PhEur texts for purity testing

- Revision of requirements for extraneous agents testing Chapter 5.2.5 : General chapters and monographs finalized.
 Date of implementation: 1st July 2020
- Step 1 : viral risk assessment
 - Justification for not conducting testing for relevant AE based on risk assessment
 - Importance of good knowledge on production process

Raw material (origin, SAO, treatment...) and production process (dilution, treatment...)

- Certified/tested animal-derived material (e.g. serum, trypsin...)
- Step 2 : Testing for those agents that cannot be ruled out by risk assessment
 - Reference list of relevant EA by species to be considered

AA = Adventitious agents or EA = Extragenous Agents (in PhEur)

NGS/HTS Emergence as a Powerful New Technology

- High-throughput **Next Generation Sequencing** allowed us to consider the extremely powerful method • in characterization of seeds
- Potential to identify **identifying known** and **unknown adventitious viruses** by sequencing all the nucleic ٠ acid within a sample without needing prior knowledge of the contaminating agents whatever the virus.
- The method allowed to identity contaminants in biologicals:
 - Finding porcine circovirus type 1 (PCV1) in a licensed rotavirus vaccine (Victoria et al., 2010)
 - Discovery of a novel rhabdovirus in the Sf9 insect cell line used for baculovirus-expressed products (Ma et al., 2014)

JOURNAL OF VIROLOGY, June 2010, p. 6033-6040 0022-538X/10/\$12.00 doi:10.1128/JVI.02690-09 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Vol. 84, No. 12

Viral Nucleic Acids in Live-Attenuated Vaccines: Detection of Minority Variants and an Adventitious Virus^v†

Joseph G. Victoria,^{1,2} Chunlin Wang,³ Morris S. Jones,⁴ Crystal Jaing,⁵ Kevin McLoughlin,⁵ Shea Gardner,⁵ and Eric L. Delwart^{1,2,4}

Identification of a Novel Rhabdovirus in Spodoptera frugiperda Cell Lines

Hailun Ma, Teresa A, Galvin, Dustin R, Glasner.* Sved Shaheduzzaman, Arifa S, Khan Laboratory of Retroviruses, Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA

HTS/NGS regulations: new Chapter 2.6.41 in EurPh

Scope vaccine and viral vectors used as gene therapy products

Elaboration of a Ph. Eur. chapter on HTS/NGS (EDQM)

- Ph. Eur. chapter 5.2.5 mentions HTS/NGS and foresees its use as part of the testing strategy for adventitious/extraneous agents
- No description of HTS/NGS methods or any guidance for their validation is provided

> EDQM HTS Working Party and its Chair, Dr Johannes Blümel (PEI)

(international group of regulators, OMCLs and industry from Europe, US, Canada)

- The **availability of regulatory standards** including validation guidelines in the Ph. Eur. will serve as a reference for regulators and manufacturers, while:
 - Appropriate reference viruses developed by FDA; adopted as WHO international reference panel for NGS/HTS
- **Appropriate viral database** (RVDB Reference Virus Database)
- Draft: public consultation in Pharmeuropa (30th June 24) <u>https://pharmeuropa.edgm.eu/home</u>

Ph. Eur. chapter 2.6.41 contents

- Description of HTS/NGS methodologies used for:
- the detection of viral extraneous agents in biological products

(ex. vaccines, recombinant proteins, viral vectors used for gene therapy, cell-based preparations for cell therapy).

• Guidelines for the validation of the HTS/NGS methods for viral extraneous agent detection

Reference: PA/PH/Exp. 15/T (21) 27 ANP

41 42 43 44 45 46 47 48 49 49 40 41 42 43 43 44 44 44 44 45 46 47 47 48 49 49 49 40 41 41 42 43 44 44 45 46 47 47 48 49 49 49 40 41 41 42 43 44 44 45 46 47 47 48 49 49 40 4

- 44 1. INTRODUCTION & SCOPE
- 45 Viral extraneous agents (also referred as viral adventitious agents) can be introduced
- 46 unintentionally in biological products at various stages in the manufacturing process. To ensure
- 47 product quality and safety, a comprehensive strategy is established following the principles of viral safety risk assessment detailed in general chapter 5.1.7. This strategy includes testing for viral contamination and may require a panel of suitable tests that are able to detect diverse viruses

- 1. INTRODUCTION AND SCOPE 2. DESCRIPTION OF METHODS 2.1 General considerations 2.2 Sample pre-treatment 2.3 Extraction of nucleic acids 2.4 Post-nucleic acid extraction treatment (enrichment) 2.5 Library preparation 2.6 Sequencing 2.7 Bioinformatics analysis 2.8 Scientific evaluation of the results 2.9 Follow-up investigation 2.10 Controls in the routine assay 3. HTS METHOD VALIDATION
 - 3.1 General considerations for validation
 - 3.2 Selection of spiking material for validation
 - 3.3 HTS method validation (generic method validation)
 - 3.4 Product-specific validation
 - 4. TARGETED HTS

Ph. Eur. chapter 2.6.41 – Description of the method

 The strategy for HTS viral extraneous agents testing depends on the choice of sample type and production stage to be tested:

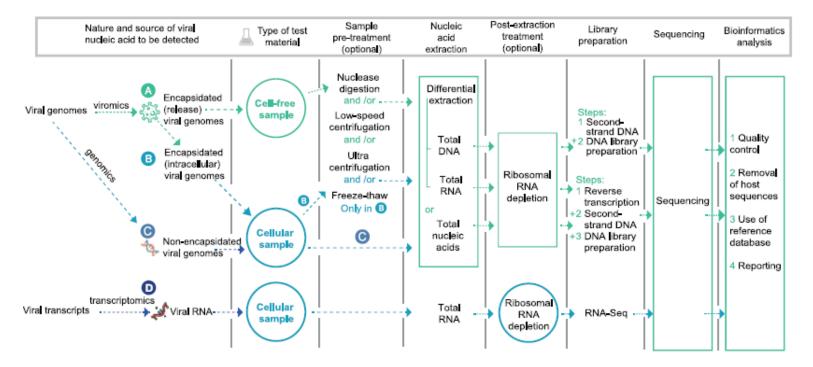
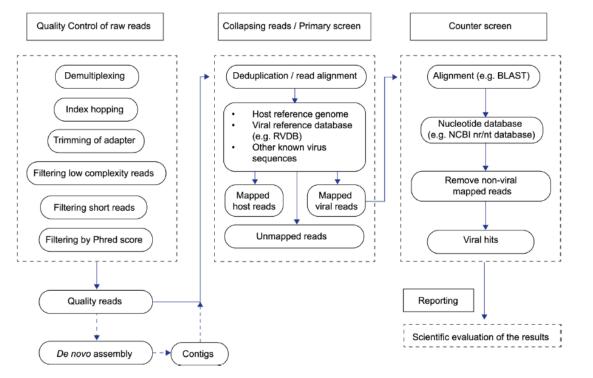


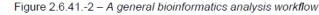
Figure 2.6.41.-1 – Examples of HTS workflow (note: each step is explained in the following sections)

- Different approaches for sample preparation depending on the test material:
 - Genomics: All genomic viral nucleic acids (DNA and RNA)
 - **Transcriptomics**: Viral RNAs
 - Viromics: Encapsidated viral genomes
- Sample pre-treatment (may increase sensitivity):

.

- Single method or combination of method
- Nuclease digestion, freeze-thaw, centrifuge, filtration




Ph. Eur. 2.6.41 – Sequencing & Bioinformatics

- Selection of the most appropriate sequencing technology and platform
 - Take account the sample type, sequencing depth and coverage, accuracy and read length
- Bioinformatics analysis

Boehringer

Ingelheim

- Importance of quality controls of raw reads:
 - One sample per run
 - or Multiplexed samples (bar-coded)
- Strategies for reducing dataset and primary screen:
 - e.g.: removing identical reads
 (deduplication)
 - Reads of the expected sequences (host, vector, known virus or products related sequences) can be subtracted.
- Mapping against a reference virus database
 - e.g. the Reference Viral Database RVDB
 - In some cases, followed by de novo assembly to generate contigs
- Analysis pipeline
 - Usually custom-made, using a combination of commercially or in-house tools

B. de Saint-Vis AFSA Webinar 8th October 2024 | ONLY FOR INTERNAL USE 15

Ph. Eur. 2.6.41 – Evaluation of results and follow-up investigation

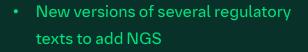
- The validity of the HTS run should be based on the recovery of one or more internal controls or on expected results from a control sample run in parallel
- The interpretation of the results obtained by the bioinformatics analysis should take into account pre-defined criteria for distinguishing true positives and false positive viral signals (e.g. genome coverage, sequencing depth)
- Appropriate **controls** to capture any **cross-contamination** from the facilities or instruments
- When a true positive hit has been identified, a laboratory-based follow-up is needed to assess whether the viral sequence is associated with an infectious virus.

Ph. Eur. 2.6.41 – Validation (guidelines)

- The validation of an **HTS method for the detection of extraneous viruses** must demonstrate that the **method is suitable for the intended purpose**, based upon the sample type (e.g., cell substrate / cell bank, virus seed, harvest) and testing approach
- HTS used as qualitative limit test; parameters to assess
 - Specificity (including breath of virus detection) & limit of detection
- Require an end-to-end assay validation and may include subdivision of the workflow into modules
 Enrichment & library
- Importance of **spiking material for validation** (for genomics and viromics approaches, reference standard should be **viruses representing viral diversity** in terms of structure, nucleic acid type, genome size, morphology... and **well characterized**

High length fragment constitution

ermal random amplification


Illumina technoloc

- **Modules** corresponding to
 - sample and library preparation,
 - sequencing instrument,
 - bioinformatics analysis
- The modular validation approach provides more flexibility (e.g. less effort required for re-validation)
- Well characterized and available reference standards:
 - Enveloped, non-enveloped, RNA or DNA genome, single-stranded or double-stranded genome..., size, virus morphology...
 - Genome copy number, infectious titer, viral genome sequence(s)
 - WHO international Virus Ref. Panel

Conclusion & next steps

- More and more companies used NGS or plan to use NGS for purity testing
 - huge boost with mRNA vaccines and new therapeutics
 - Most of the assays concerned Illumina platform
- HTS/NGS could be part of the testing strategy for adventitious/extraneous agents (Ph. Eur. chapter 5.2.5); substitute/replace multiple in vitro/in vivo tests (3R)
- The future Ph. Eur. general chapter 2.6.41 on HTS/NGS will provide a detailed description of the technology together with validation guidelines, to support users implementing this new technology

- EDQM, WHO
- Coming Chapter EurPh 2.6.41
 (2025): guidance for validation
- Implementation of NGS for Adventitious/extraneous Virus Testing of Biologics
 - Increased efficiency (time)
 - Reduce animal-derived use; 3Rs
 - Sensitivity, specificity,
 repeatability, accuracy
 - The availability of regulatory standards will serve as reference for regulators and manufacturers

Upcoming events on NGS for adventitious virus detection in Biologics

International Alliance for Biological Standardization

Frankfurt, Germany

December, 3-5 2024

4th Conference on Next Generation Sequencing for Adventitious Virus Detection in Biologics for Humans and Animal

2024 is a key year for globally considering NGS implementation with the recent publication of the revised ICHQ5A(R2) guideline and the expected publication of the EDQM/European Pharmacopoeia chapter for comments.

Scientific Committee :

- Arifa S. KHAN, co-chair FDA-CBER (FDA), U.S.A.
- · Laurent MALLET, co-chair, EDQM, France
- Pieter NEELS, IABS Human Vaccine Committee Chair, Belgium
- Johannes BLÜMEL, PEI, Germany
- Noémie DENEYER, GSK, Belgium
- Sigrid DE KEERSMAECKER, Sciensano, Belgium
- Blandine DE SAINT-VIS, Boehringer-Ingelheim, France
- · Ivana KNEZEVIC, WHO, Switzerland
- Carine LOGVINOFF, Sanofi, France
- Marie MURPHY, Eli Lilly, Ireland
- Siemon NG, Notch Therapeutics Canada
- Yoji SATO, NIHS, Japan
- Michael WALL, Health Canada

Acknowledgements

- EDQM HTS Working Party and its Chair, Dr Johannes Blümel (PEI)
- Dr Thuy Bourgeois, Dr Gwenaël Ciréfice, Dr Emmanuelle Charton, Dr Laurent Mallet (EDQM)
- Dr Arifa Khan US FDA

Thank you for your attention

