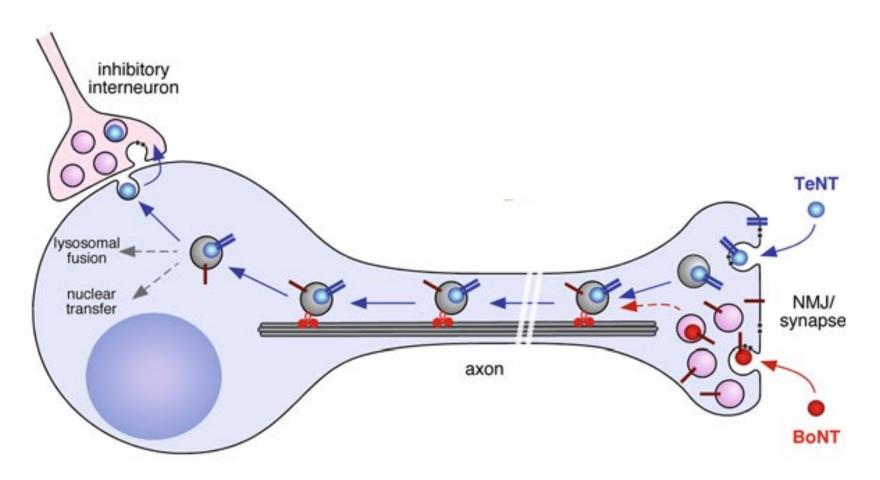
A cell-based assay for Tetanus toxin

Medicines & Healthcare products Regulatory Agency

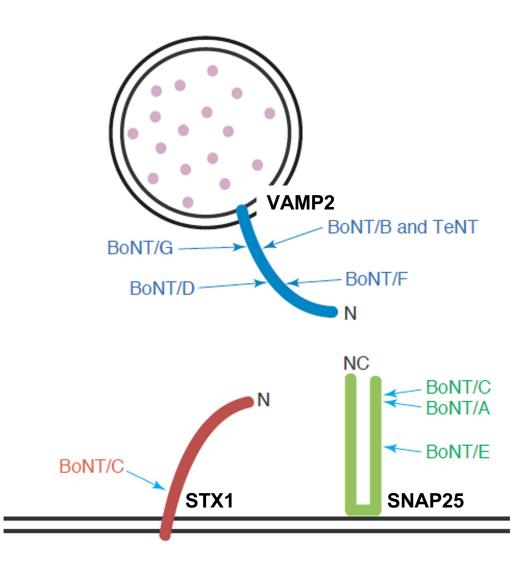
The majority of Clostridial based products are tested in animals

- Biological Drugs: need extensive testing for each batch release
 Carried out by industry and government regulators
- Potency testing, residual toxicity testing, anti-toxin testing and neutralisation assays
- Gold Standard LD50 Assay: lethal endpoint: 50 % of animals Respiratory depression Suffering including limb breakage (tetanus) Most severe assays used
- High variability, expensive, large number of animals required

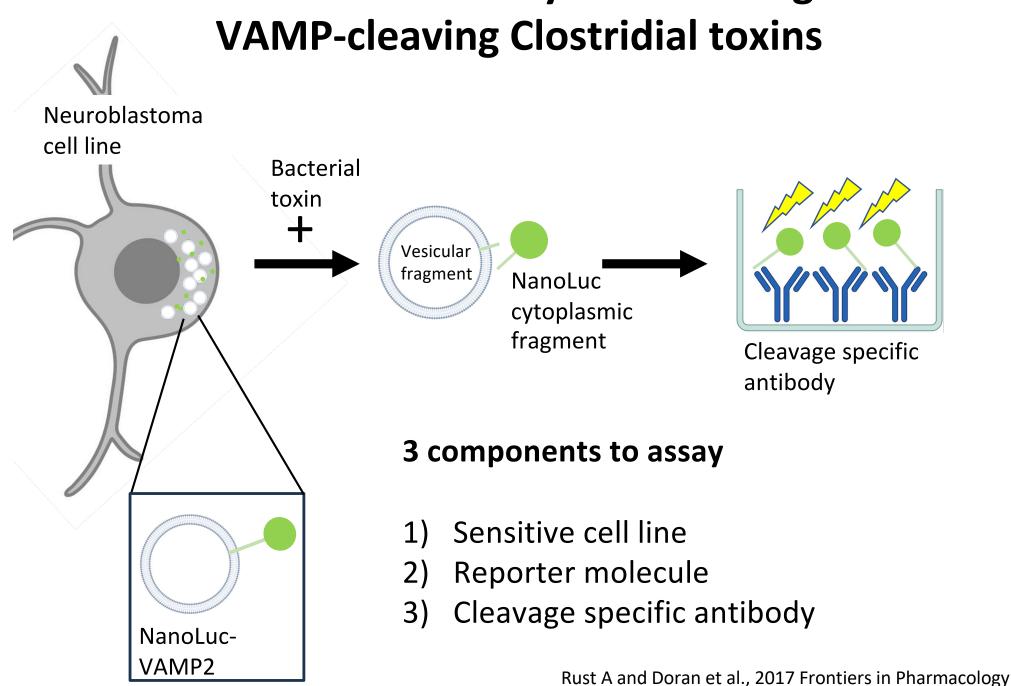
>600,000 animals used globally for botulinum and tetanus toxins.


Can we develop a cell-based assay that can be used for:

- Potency testing
- Anti-toxin testing
- Neutralisation assays
- Residual toxicity testing

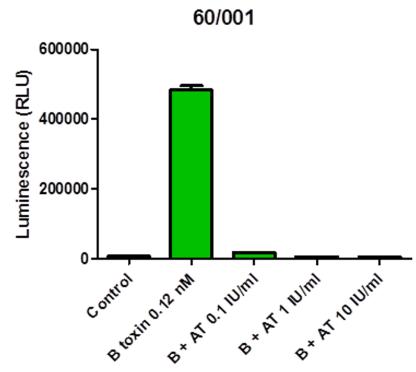

Thea Sesardic and Paul Stickings

Botulinum and Tetanus toxins have a similar mode of action but intoxicate different neurons



Bercsenyi, Giribaldi and Schiavo 2013 Current Topics in Microbiology and Immunology

BoNT/B and Tetanus toxin cleave VAMP2



Breidenbach and Brunger 2005 Trends in molecular medicine

A cell-based assay for detecting

BoNT/B Antitoxin inhibits BoNT/B Action on NanoLuc-VAMP2 SiMa Cells

23

Medicines & Healthcare products Regulatory Agency

> Non WHO Reference Material Botulinum type B antitoxin, equine NIBSC code: 60/001 Instructions for use (Version 6.0, Dated 24/01/2014)

This material is not for in vitro diagnostic use.

1. INTENDED USE

This material is a freeze-dried residue of horse antiserum to Clostridium botulinum type B toxin. It is intended for calibration of the bioassay for botulinum type B antitoxin. The material may also be suitable to confirm serotype identity of botulinum type B toxin. Recent in-house studies at NIBSC using an in vivo local flaccid paralysis assay have indicated that this antitoxin will cross-neutralise botulinum type A toxin with an approximately thirty-fold or more excess of antitoxin.

Experiments performed by MHRA using the NanoLuc VAMP2 cell line

National Centre for the Replacement Refinement & Reduction of Animals in Research

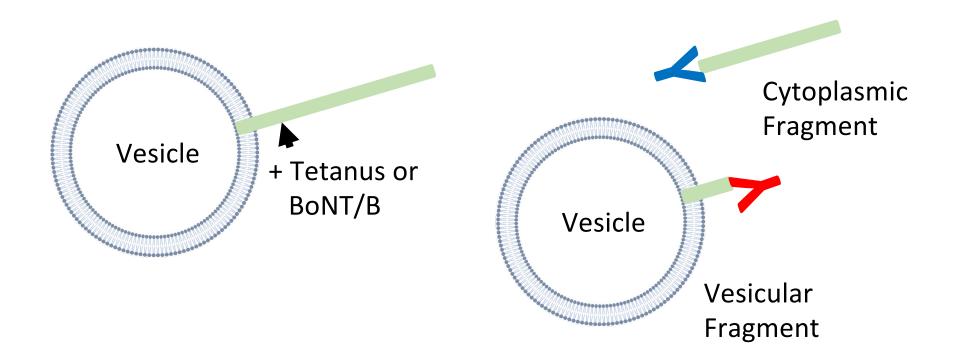
Ciara Doran and Shalini Rajagopal

Biologicals 71 (2021) 31-41

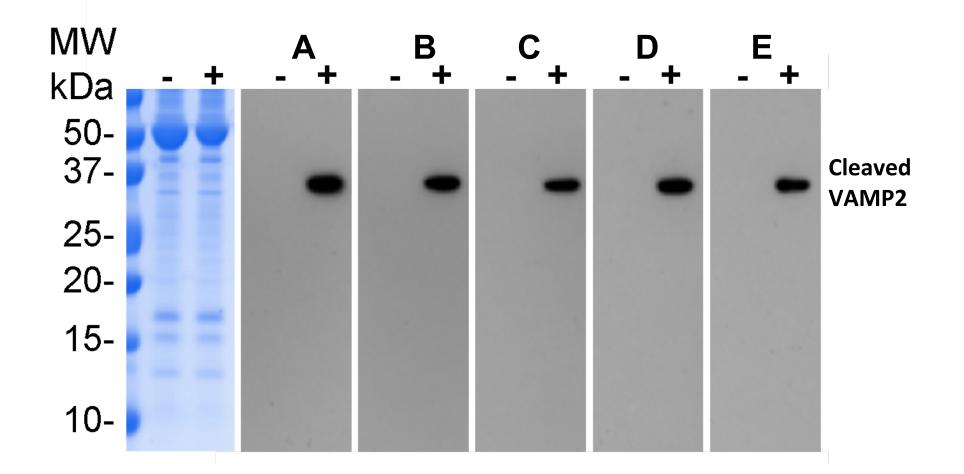
Research paper

Characterisation of tetanus monoclonal antibodies as a first step towards the development of an *in vitro* vaccine potency immunoassay

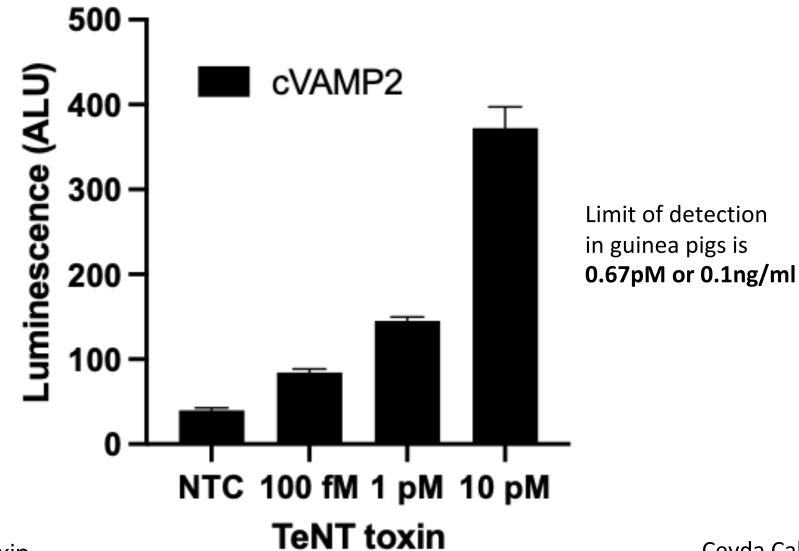
Rebecca Riches-Duit^{a, 1}, Laura Hassall^{a, 1}, Amy Kogelman^b, Janny Westdijk^b, Shalini Rajagopal^a, Bazbek Davletov^c, Ciara Doran^c, Alexandre Dobly^d, Antoine Francotte^d, Paul Stickings^{a,*}



vac2vac


Shalini Rajagopal, Laura Hassall & Rebecca Riches-Duit

Generation of recombinant antibodies specific to toxin cleaved VAMP2


Validation of recombinant antibodies

SiMa NanoLuc-VAMP2 cells were treated with or without 1nM BoNT/B

Deniz

Further optimisation of the CBA has improved its sensitivity

List Labs Toxin

Ceyda Caliskan

Summary of CBA

- Simple, quantitative luminescence-based assay.
- Covers all the biological steps of intoxication.
- Only takes 7 days to perform.
- Recombinant capture antibodies.

Overview of Tetanus CBA Collaborative Study

Phase I:

- Donation of tetanus toxoids
- Parallel testing at MHRA and UoS using NanoLuc cell lines
- Suitability of luciferase assay for detection of toxin and LOD
- Publication of anonymised manufacturer data

Phase II:

- Technical transfer of NanoLucVAMP2 CBA under MTA to manufacturers
- Training and critical reagent provision
- Data generated by tetanus vaccine manufacturers using real-world toxoid samples

Collaborative Study Participants

Vaccine manufacturer	Approx. no. of animals used per	Tetanus toxoid
	year	
Human	1000	
Human	750	Lf/ml ranging from
Human	100-200	~900-6000
Human	100	
Human	Not provided	
Human	Not provided	
Human	Not provided	
Veterinary	Not provided	
Veterinary	Not provided	

Tetanus Toxin Reference Reagent

Purpose

- Provide standardisation for testing tetanus bulks *in vitro*
- Tetanus toxin material donated from vaccine manufacturer to MHRA, with accompanying *in vivo* data
- Positive control utility for tetanus
 CBA and the BINACLE assay
- New RR would be made available to all to purchase from MHRA

Challenges

- 2nd most deadly toxin known to man
- Consequence on handling, formulation, freeze-drying, international shipping etc
- Establishing *in vitro* stability measurements

Acknowledgments

UoS

Ciara Doran Charlotte Leese Ceyda Caliskan Deniz Simsek

Retired

Thea Sesardic Bazbek Davletov

Biotechnology and Biological Sciences Research Council

National Centre for the Replacement Refinement & Reduction of Animals in Research

MHRA

Paul Stickings Shalini Rajagopal Laura Hassall Rebecca Riches-Duit

In Vitro Tetanus Toxin detection models

BINACLE	Sheffield CBA assay
 Completely in vitro ELISA based method Requires mAb against cleaved VAMP2 Much less expensive than in vivo ~3 days to perform Binding and cleavage model only 	 Neuroblastoma CBA with ELISA/luciferase assay readout Availability of positive/negative control peptides, toxin reference reagents ~6 days to perform + slightly more complex than BINACLE to perform Full intoxication model

Requires: suitable positive and negative controls, monoclonal antibodies, comparable sensitivity to in vivo, regulatory acceptance...

- Demonstrating absence of toxin activity in toxoid
- Towards a consistency approach for tetanus vaccine quality control (human and veterinary)