Application of Monocyte Activation Test for the Assessment of Tick-Borne Encephalitis Virus Vaccine Pyrogenicity

Status of global implementation of MAT for biologicals. Product Specific Approaches and Regulatory Alignment

AFSA Workshop

September 25th, 2024

Marilena P. Etna, PhD Istituto Superiore di Sanità, Rome (Italy) Department of Infectious Diseases

ITALIAN NATIONAL INSTITUTE OF HEALTH [ISS]

25th September 2024

<u>http://www.imi.europa.eu/</u> <u>http://www.vac2vac.eu/</u> VAC2VAC - Vaccine batch to vaccine batch comparison by consistency testing

One of the objective of VAC2VAC project was the development and the optimization of cellular assays based on analysis of human tick-borne encephalitis virus (TBEV) vaccine-induced activation of primary APC.

To replace the existing pyrogenicity test in rabbit by performing the monocyte activation test (MAT assay) described in the European Pharmacopoeia by using human peripheral blood mononuclear cells (PBMC).

25th September 2024

01/2019:1375

TICK-BORNE ENCEPHALITIS VACCINE (INACTIVATED)

Vaccinum encephalitidis ixodibus advectae inactivatum

DEFINITION

Tick-borne encephalitis vaccine (inactivated) is a liquid preparation of a suitable strain of tick-borne encephalitis virus grown in cultures of chick-embryo cells or other suitable cell cultures and inactivated by a suitable, validated method.

FINAL LOT

Only a final lot that is satisfactory with respect to each of the requirements given below under Identification, Tests and Assay may be released for use. Provided that the tests for free formaldehyde, bovine serum albumin (where applicable) and pyrogens and the assay have been carried out with satisfactory results on the final bulk vaccine, they may be omitted on the final lot.

IDENTIFICATION

The vaccine is shown to contain tick-borne encephalitis virus antigen by a suitable immunochemical method (2.7.1) using specific antibodies. The assay also serves to identify the vaccine.

TESTS

Aluminium (2.5.13): maximum 1.25 mg per single human dose, if aluminium hydroxide or hydrated aluminium phosphate is used as the adsorbent.

Free formaldehyde (2.4.18): maximum 0.1 g/L.

Bovine serum albumin: maximum 50 ng per single human dose, determined by a suitable immunochemical method (*2.7.1*), if bovine serum albumin has been used during production.

Sterility (2.6.1). The vaccine complies with the test for sterility.

Pyrogens (2.6.8). The vaccine complies with the test for pyrogens. Inject into each rabbit, per kilogram of body mass, 1 dose of vaccine.

25th September 2024

VACCINE ACTIVE SUBSTANCE

TICK-BORNE ENCEPHALITIS VIRUS

- Flavivirus
- Small enveloped virus
- Positive-sense, singlestranded RNA
- 3 structural proteins

NO INTRINSIC PYROGENICITY

TBEV vaccine production process

Background Document on Vaccines and Vaccination against Tick-borne

TBEV (active substance) is cultivated in chicken embryo cells, clarified by centrifugation, inactivated with formalin and then purified to produce the vaccine virus stock. Pools of different purified virus stock were formulated with aluminum hydroxide (adjuvant)

Embryo harvest from chicken eggs or the virus propagation could entail the risk of bacterial, viral or cellular contaminants entering the final product

25th September 2024

DEPARTMENT INFECTIOUS DISEASES

25th September 2024

Non-Animal Methods for endotoxin and pyrogen testing

Research Article

Optimization of the Monocyte Activation Test for Evaluating Pyrogenicity of Tick-Borne Encephalitis Virus Vaccine

Marilena P. Etna¹, Elena Giacomini¹, Fabiana Rizzo¹, Martina Severa¹, Daniela Ricci¹, Shahjahan Shaid², Denis Lambrigts², Sara Valentini³, Luisa Galli Stampino³, Liliana Alleri³, Andrea Gaggioli⁴, Christina von Hunolstein⁴, Ingo Spreitzer⁵ and Eliana M. Coccia¹

¹Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; ²GSK, Wavre, Belgium; ³GSK Vaccines Srl, Siena, Italy; ⁴National Center for Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy; ⁵Paul Ehrlich Institute, Federal Agency for Sera and Vaccines, Langen, Germany ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

25th September 2024

Qualification of cell source (I)

The MAT optimized for the TBEV vaccine was set-up by using as cell source **cryopreserved peripheral blood mononuclear cells (PBMCs)**. According to Ph.Eur., human PBMCs have been qualified by assessing:

PBMC viability

Reproducibility of the response to scalar doses of reference standard endotoxin (RSE)

25th September 2024

Qualification of cell source (II)

	Cell viability (%)			RSE 0.2 EU/mL (IL-6 pg/mL)			RSE 0.4 EU/mL (IL-6 pg/mL)		
	6 months	12 months	18 months	6 months	12 months	18 months	6 months	12 months	18 months
PBMC_Donor 1	89.0	93.0	93.0	566	480	400	1200	1324	896
PBMC_Donor 2	91.2	95.5	95.5	500	455	475	1000	1000	1000
PBMC_Donor 3	95.0	92.0	91.0	410	370	430	1200	813	1200
PBMC_Donor 4	91.0	93.7	90.0	502	500	394	1213	1000	924

Etna MP et al., ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

PBMCs remain viable (≥ 90%) when stored at -196°C up to 18 months

Response to scalar doses of RSE is reproducible and stable up to 12 and 18 months after PBMC freezing

25th September 2024

Choice of the Read-out

IL-6 was chosen as read-out providing the robust production as compared to TNF- α and IL-1 β after PBMCs stimulation with RSE, and the two non-endotoxin TLR agonists R-848 and FSL-1

25th September 2024

Preparatory test: Assurance of criteria for endotoxin standard curve

	Source of variation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probability	
*	Regression	1	9.26024	9.26024	801.166	0.000	(***)
*	Non-linearity	2	0.0881724	0.0440862	3.814	0.052	
	Treatments	3	9.34842	3.11614	269.598	0.000	(***)
	Residual error	12	0.138702	0.0115585			
	Total	15	9.48712	0.632475			

Etna MP et al., ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

Linear Response to different RSE doses:

- Statistically significant regression of response on Log₁₀ dose of RSE (p < 0.01)
- Not significant deviation of RSE Log₁₀ dose from linearity (p > 0.05)

Preparatory test: Test for interfering factors

In vaccine dilutions starting from 1:12.5 **RSE recovery** was **within** the permitted range of **50-200%**

25th September 2024

Preparatory test: Interference in the Detection System

Standard Standard+V1		Standard+V2		Standard+V3		Standard+V4		Standard+V5			
pg/mL	OD	OD	Interference (%)	OD	Interference (%)	OD	Interference (%)	OD	Interference (%)	OD	Interference (%)
600	2.629	2.549	-3.4%	2.507	-4.6%	2.580	-1.86%	2.415	-8.1%	2.535	-3.5%
300	1.788	1.770	-1.0%	1.818	+1.6%	1.579	-11.6%	1.719	-3.8%	1.662	-7.0%
150	1.095	1.061	-3.1%	1.024	-6.4%	0.924	-15.6%	1.001	-8.5%	0.980	-10.5%
75	0.593	0.555	-6.4%	0.565	-4.7%	0.500	-15.6%	0.562	-5.2%	0.526	-11.2%
37.5	0.294	0.240	-18.3%	0.291	-1.0%	0.244	-17.0%	0.276	-6.1%	0.265	-9.8%
18.8	0.140	0.131	-6.4%	0.130	-7.1%	0.111	-20.0%	0.116	-17.1%	0.120	-14.2%
9.38	0.076	0.073	-3.9%	0.062	-18.4%	0.068	-10.5%	0.068	-10.5%	0.066	-13.1%

V1= 1µg/ml [1:3]; V2= 0.5 µg/ml [1:6]; V3= 0.25 µg/ml [1:12.5]; V4= 0.125 µg/ml [1:25]; V5= 0.0625 µg/ml [1:50]

Etna MP et al., ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

TBEV vaccine does not interfere with the ELISA procedure since variations in OD values fall within +/- 20%

25th September 2024

Preparatory test: Method validation for non-endotoxin monocytesactivating contaminants

To verify whether the experimental conditions employed for the assay ensure a **linear response to different doses of 2 NEPs** (non-endotoxin pyrogens)

To assess whether the product to be tested (i.e., the vaccine) interferes with the detection of NEPs

25th September 2024

Preparatory test: Method validation for non-endotoxin monocytesactivating contaminants

25th September 2024

MP Etna - AFSA MAT Workshop

Determination of LOD, AS, MVD and CLC for MAT optimized for the TBEV vaccine

TLR agonist	LOD	AS		
RSE (EU/ml)	0.040	0.100		
R-848 (µg/ml)	0.050	0.150		
FSL-1 (ng/ml)	0.003	0.009		

MVD and CLC Calculation

- K= 5 EU/kg (as for any parenteral administration);
- M = dose (ml)/body mass (kg) where dose = 0,25 ml and body mass= 5 kg (since it is a pediatric vaccine);
- LOD (single PBMC donor) = 0,04 EU/ml
- Assay sensitivity [AS] = 0,1 EU/ml (the lowest or one of the lower concentration of RSE or NEPs close to the beginning of the linear part of the standard curve)

CLC = K/M = 100 EU/ml MVD* = CLC/LOD = 2700 MVD° = CLC/AS= 1000

Etna MP et al., ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

* As described in European Pharmacopoeia

° Proposed new calculation

25th September 2024

Layout of MAT applied to the pyrogenicity testing of TBEV vaccine

Active substance: TBEV inactivated by formaldehyde [ENCEPUR®] Excipients: Aluminum hydroxide, TRIS buffer, sucrose. Traces of tetracycline, gentamicine, neomycine and formaldehyde.

25th September 2024

MAT validation on 3 anti-TBEV vaccine lots

According to ICH Q2(R1), a precision study for the MAT optimized for the TBEV vaccine was conducted to calculate:

Repeatability of the method

Intermediate precision of the method

OD: Optical Density RSE: Reference Standard Endotoxin eEU/ml: Equivalent of Endotoxin Unit CLC: Contaminant Limit Concentration

MP Etna - AFSA MAT Workshop

25th September 2024

25th September 202