

sanofi

Human Rabies Vaccines Part I Switching from *in vivo* to *in vitro* potency testing

Patrice Riou

Global Analytical Strategy and Regulatory Compliance R&D Sanofi Vaccines

Contents

01 Context

02 ELISA development/validation

- mAb choice
- Assay development & validation

03 Potency acceptance criteria

- Case of a new vaccine
- Case of a registered vaccine
- 04 Conclusions

Contents

01 Context

02 ELISA development/validation

- mAb choice
- Assay development & validation

03 Potency acceptance criteria

- Case of a new vaccine
- Case of a registered vaccine
- 04 Conclusions

Sanofi Human Rabies Vaccine Portfolio

Rabies Vaccine Potency Assays

NIH in vivo potency assay

- Immunization followed by lethal challenge in mice with IC injection of virulent rabies suspension (CVS strain)
- Developed in 1966⁽¹⁾ and used for more than 50 years to release rabies vaccines
- Compendial test described in WHO TRS 941 & Ph. Eur. 0216
- High variability observed & use of a large number of animals per test

sanofi

(1) Seligmann EB Jr. Laboratory techniques in rabies. Potency-test requirements of the United States National Institutes of Health (NIH). Monogr Ser World Health Organ. 1966;23:145-51

G protein ELISA – Good surrogate of potency !?

Major correlate of protection is due to glycoprotein G neutralizing antibody	≈ 83% of human rabies neutralizing Abs are against G protein domain III	The protection mainly depends on the preservation of its three- dimensional structure	Denatured glycoproteins are shown to be poorly immunogenic	Initial studies indicate good agreement between NIH test and the ELISA antigen content
•Wiktor T et al ; J Immunol 1973;110:269–76	•Kramer et al, Eur J Immunol. 2005 Jul;35(7):2131-45	 Bunschoten et al, J Gen Virol. 1989 Jun;70 (Pt 6):1513-21 Bunschoten et al, J Gen Virol. 1989 Feb ;70 (Pt 2):291-8 	•Gamoh et al, Biologicals 1996;24:95–101 •Dietzschold et al, Virology 1983;124:330–7	 Lafon et al, J. Biol. Standard., 13 (1985), pp. 295-301 Thraenhart et al, J. Biol. Standard., 17 (1989), pp. 291-309 Perrin et al, Biologicals, 18 (1990), pp. 321-330 Rooijakkers et al, J. Virol. Methods, 58 (1996), pp. 111-119 Rooijakkers et al, Dev. Biol. Stand; 1996; 137- 145. Gibert et al, Vaccine. 2013 Dec 5;31(50):6022- 6029

Contents

01 Context

02 ELISA development/validation

- mAb choice
- Assay development & validation
- 03 Potency acceptance criteria
 - Case of a new vaccine
 - Case of a registered vaccine
- 04 Conclusions

Rabies G protein ELISA – monoclonal Antibodies

sanofi

Quantitative sandwich direct ELISA method using two monoclonal antibodies against specific rabies G protein epitopes

Capture mAb 1112-1

(Wistar Institute, Philadelphia, PA, USA)

- IgG1 isotype : neutralizes all genotype 1 strains
- Against the **antigenic site II** of the glycoprotein
- Recognizes conformational and discontinuous epitopes (aa 34-42 and aa 198-200 associated by S-S bridge)

Detection Biotinylated mAb D1-25

(Pasteur Institute, Paris)

- IgG1 isotype : neutralizes genotype 1 (PV, CVS, PM and Flury LEP strains) and genotype 6 (EBL2 strain)
- Against the antigenic site III of the glycoprotein
- Recognizes conformational epitope of the glycoprotein (aa 330- 343)
 J. Fournier-Caruana et al. (2003) Biologicals 31:9-16

Dietzschold et. al. (1992) PNAS 89(15):7252-7256

Rabies G Protein ELISA – Functional Monoclonal Antibodies

Neutralizing activity using Rapid Focus Fluorescent Inhibition Test (RFFIT)

mAb	Neutralizing activity (IU/µg mAb)			
	CVS11 strain	PM strain	Flury LEP strain	
D1-25	0.079	0.16	0.10	
1112-1	3.22	2.66	2.72	

Chabaud-Riou M et al, Biologicals 46 (2017) 124-129

- Both D1-25 and 1112-1 mAbs show similar neutralizing activity against the 3 rabies strains CVS11, Pitman More and Flury LEP
- 1112-1 mAb has superior neutralizing activity compared to D1-25 mAb

1112-1 and D1-25 are both neutralizing antibodies

Rabies G protein ELISA*

- Develop in vitro ELISA potency test for the detection of Rabies G protein
- Generate data to support the NIH test replacement on the next generation of rabies vaccine VRVg

- Quantitative sandwich direct ELISA method
- Use of two neutralizing monoclonal antibodies against specific rabies G protein epitopes
- Titration relative to an internal reference calibrated in IU against the 6th WHO IS

Implementation of the in vitro ELISA potency assay 1. Next generation of rabies vaccine **VRVg**

2. Commercialized rabies vaccine

sanofi

* Chabaud-Riou M, et al G-protein based ELISA as a potency test for rabies vaccines. Biologicals. 2017 Mar;46:124-129

Sanofi Rabies G Protein ELISA : Stability Indicating Assay

Strategy

sanofi

Set up experimental conditions to produce altered / degraded rabies virus (Chabaud-Riou M et al, Biologicals 46 (2017) 124-129)

The Sanofi Pasteur rabies G protein ELISA detects the alteration of the G protein and is a stability indicating assay

Jallet et al, (1999), J Virol 73:225–33 ; Bakker et al. (2005) J. Virol., 79: p9062
 Morgeaux et al. (1993), Vaccine 11-1:82-90

Rabies G protein ELISA agreement with NIH ...

...but more discriminative

G protein ELISA is more discriminant than in vivo NIH test

Based on **Ph. Eur. 5.2.14**: Substitution of *in vivo* method(s) by in vitro method(s) for the quality control of vaccines

sanofi

Chabaud-Riou M et al, Biologicals 46 (2017) 124-129
 Toinon A et al, Biologicals 60 (2019) 49-54

Sanofi Rabies G protein ELISA - ICH Validation

The method is validated at the Drug Substance (DS) and Drug Product (DP) stages for both vaccines according to ICH principles

VRVg				
Specificity •Vaccine matrix	Linearity range •DS : [9 - 270 UI/mL] •DP : [2.4 - 46.4 UI/mL]	Specificity •Vaccine matrix	Linearity range •DS : [1.0 - 323.9] IU/mL •DP : [0.62 - 11.15] IU/dose	
Accuracy •DS : [96% - 104%] •DP : [95% - 108%]	Intermediate precision (95% CI for 1 run with 1 measurement) •DS : x/÷ 1.11 •DP : x/÷ 1.07 to 1.15 depending on formulation level	Accuracy •DS : [95% - 102%] •DP : [93% - 104%]	Intermediate precision (95% CI for 1 run with 1 measurement) •DS : x/÷ 1.08 •DP : x/÷ 1.12	

Critical parameters identified and evaluated during robustness studies **sanofi**

ICH

Sanofi Rabies G protein ELISA

Sanofi Rabies G protein ELISA is a good candidate to replace NIH potency test

Dose dependent relationship between Rabies G Protein Content (by ELISA) & Human immune response (GMT)

VRV11 Phase II dose-ranging clinical study

Pichon S, Moureau A, Petit C, et al. Safety and immunogenicity of a serum-free purified Vero rabies vaccine in healthy adults: A randomised phase II pre-exposure prophylaxis study. Vaccine. 2022;40(33):4780-4787. doi:10.1016/j.vaccine.2022.06.040

Contents

01 Context

02 ELISA development/validation

- mAb choice
- Assay development & validation

03 Potency acceptance criteria

- Case of a new vaccine
- Case of a registered vaccine

04 Conclusions

Sanofi Rabies G Protein ELISA Support to VRVg process development

- Rabies G protein ELISA implemented on DS process intermediates:
 - To monitor process yields/losses
 - To ensure consistent quality along DS process
- Rabies G protein ELISA used to **formulate** VRVg FBP
- Rabies G protein ELISA used to monitor VRVg DS and DP **stability**
- VRVg DP Clinical dose(s) expressed in ELISA units since phase 1 and all along clinical development
 - NIH test performed on DP as a specification test in parallel to ELISA on all clinical DP batches

Strategy for New Vaccine (e.g. VRVg) DP in vitro potency (ELISA) Potency acceptance criteria

Life-Cycle Management

ELISA Release

Upper acceptance criteria

Release and Stability

lower acceptance criteria

- For CTD submission: To define acceptance criteria supported by clinical data
- For life-cycle management: to define in-house action limits based on process consistency

CTD submission strategy

ELISA Potency acceptance criteria for VERORABTM DP

G protein ELISA for DP formulation and DS monitoring

New ELISA potency on DP is associated with:

- New DP ELISA formulation target (replacement of SRID)
 - To match DP acceptance criteria and taking into consideration F&F and shelf-life losses
- Implementation of ELISA on VeroRabTM DS (replacement of SRID)
 - To monitor DS stability
- Implementation Of G rabies ELISA on VeroRabTM DS intermediates
 - ELISA has a wider linearity range and is less sensitive to matrix interference
 - Better monitors process yields/losses to ensure consistency

2022

20

Contents

01 Context

02 ELISA development/validation

- mAb choice
- Assay development & validation

03 Potency acceptance criteria

- Case of a new vaccine
- Case of a registered vaccine

04 Conclusions

Conclusions

Replacement of *in vivo* method by *in vitro* method and setting specifications

- *In vitro* method suitability & validation package is key
- Consider implementing in vitro method not only at DP stage but also in upstream intermediates (DS intermediates, DS, FBP, Filled Product) and for stability studies

• For new products

- Clinical trial design is critical in order to have clinical data supporting potency acceptance criteria
- Defining the DP dose for phase 1/2 dose ranging and for phase 3 efficacy studies is important
- F&F product losses and product stability should also be taken into consideration

On already commercialized product

- Consistency approach requires to set product specific criteria calculated using a set of batches representative of manufacturing variability
- Implementation of *in vitro* method not only on DP but also in intermediates

Acknowledgements

Françoise Guinet-Morlot

Carole Bourot

Elisabeth Niogret

Sebastien Gaudin

Emmanuelle Coppens

Benedicte Mouterde

Audrey Toinon

Sylvie Uhlrich

Disclosure and Funding

Patrice Riou and contributors (listed in acknowledgment) to this study are sanofi employees and may hold sanofi shares

This study was funded by sanofi

Thank you

THE EUROPEAN DIRECTORATE FOR THE QUALITY OF MEDICINES & HEALTHCARE (EDQM)

Case study: Human rabies vaccines

Switching from in vivo to in vitro potency testing

Part II : towards a global harmonised change

Eriko TERAO

Council of Europe

European Directorate for the Quality of Medicines & HealthCare (EDQM) Biological Standardisation Programme

Transition to non-animal based vaccine batch release testing, HSI Webinar 27th March 2024

Rabies vaccines – from *in vivo* to *in vitro* potency testing

- European Convention for the protection of vertebrate animals used for experimental and other scientific purposes (ETS No. 123, Council of Europe, 1986)
- European Directive on the use of animals for scientific purposes (Directive 86/609/EEC, replaced by 2010/63/EU)

International initiatives for the development of an alternative *in vitro* method for the potency control of human rabies vaccines conclude on the feasibility of an ELISA approach

> 2010 : workshop on the consistency control of vaccines (Strasbourg, FR) 2011 : workshop on alternate rabies virus vaccine potency test development (Ames, USA)

→ Despite the development of various alternative approaches
 the global acceptance for the replacement of the NIH test by an *in vitro* method
 is hindered by the absence of a common standardised method

e European Partnership Instale Argendes to Koler Brand

Establishing a common standardised replacement method

Advantages ✤ acceptance at large (global) level \rightarrow international initiative no need to maintain multiple validated methods for lot release testing increased proficiency of operators higher precision & shorter lead times of an ELISA approach optimised resources ✤ cost effective Pre-requisites no proprietary rights on method of the method accessible reagents and equipments applicable to most products \rightarrow international collaborative project transferable and robust method

> The European Partnership to Atomatic Agoreabe to Area Territy

Rabies vaccines - from in vivo to in vitro potency testing

Rabies vaccines - from in vivo to in vitro potency testing

Step 1 : selection of a candidate method: EPAA project

European Partnership for Alternative Approaches to Animal Testing (EPAA)

Vision Replacement, reduction and refinement (3Rs) of animal use for meeting regulatory requirements through better & more predictive science

a collaboration between

- European Commission 5 Directorate General : DG GROW, DG ENV, DG SANTE, DG JRC, DG RTD including Partner Agencies : ECHA, EFSA, EMA
- Industry stakeholders 39 companies & 9 associations from 8 industrial sectors

* Steering Committee

 * Advisory body (Mirror Group) representatives of civil society, including academia, animal welfare and 3Rs centres, acting as a consultation forum in an advisory capacity to the steering committee
 * Secretariat GROW-EPAA@ec.europa.eu

Step 1: selection of a candidate method: EPAA project

- ✓ 5 laboratories: 2 manufacturers & 3 NCLs
- ✓ 3 ELISA methods: from 2 manufacturers & 1 NCL
- ✓ 3 products, 3 virus strains (PM, Flury-LEP, PV)
- ✓ 7 samples: intact (N), heat degraded (Degr), mix of 50% intact-spiked degraded (50%)
- \checkmark WHO Rabies vaccine IS as reference standard to express results in IU

Step 1: selection of a candidate method: EPAA project

✓ 2015 EPAA Workshop 2 (Arcachon-2 meeting)

The Working Group determined that the GP ELISA (method B, Sanofi Vaccines) is the most promising method for further evaluation in a wider collaborative study

- no proprietary rights by the developer of the selected method
- highly characterised specific monoclonal antibodies owned by public laboratories
- recognises at least 3 virus strains used for vaccine production (data from 2015; at least 6 strains by 2022)
- preliminary data support good transferability of the method

 \rightarrow Step 2

Rabies vaccines - from in vivo to in vitro potency testing

Biological Standardisation Programme (BSP)

A programme co-funded by the · Council of Europe/EDQM · Commission of the European Union

- ✓ organises international collaborative studies for the
 - establishment of common reference materials and critical reagents
 - evaluation of the transferability and robustness of common (new/improved) testing methods
- * Steering Committee Chairs of the Ph. Eur. Groups of Experts for biological products (human & vet.) EU Commission, European Medicines Agency & WHO representatives ad hoc specialists from public institutions
- * coordinated by a technical secretariat based at the EDQM/Council of Europe
- is independent : no financial interest, neutral focal point for open discussions
- holds discussions with all interested parties worldwide (NCLs, manufacturers, WHO, WOAH, pharmacopeia,...)
- works for the improvement of international harmonisation (e.g. joint studies with other organisations)
- ensures a link to the Ph. Eur. texts (e.g. via Ph. Eur. Groups of Experts and Ph. Eur. Commission)

2016 : Launch of the joint EDQM/BSP – EPAA project : BSP148

Project LeadersS. Morgeaux (ANSM, FR) & JM Chapsal (Independent, EPAA)Scientific coordinatorE. Terao (EDQM/BSP, Council of Europe)

 \rightarrow Is the selected method suitable for global use?

- transferability
- applicability to routine release testing
- Phase 1 . preparatory phase
- Phase 2 . collaborative study
- Phase 3 . reporting study

Phase 1 . preparatory phase (project management team)

- Licensing agreements established by the owner institutes of the antibodies (Wistar Institute, Institut Pasteur)
 with 2 commercial suppliers (2016-2019)
- ✓ Procurement of test samples
 - 7 manufacturers worldwide, 11 samples
 - 5 virus strains (PM, PV, Flury-LEP, aGV, CTN)
 - various potencies (low, medium, high)
- Pre-testing by 2 laboratories
 - determination of the pre-dilutions of the samples
 - qualification of lots of critical reagents
- ✓ Determination of the statistical data analysis models
- Elaboration of a detailed SOP, study design & study protocol

Determination of the statistical analysis models for data analysis

- ✓ full dose-response curves (12 dilution points)
- ✓ fitting of 2 statistical models to the data
 - → 5 parameter logistic (5PL) model (asymetrical sigmoid curve)
 - \rightarrow parallel line (PL) model (linear part of the dose-response curve)

Study & assay design

- ✓ Selection of 8 dilution points covering the linear range + lower/upper points
- ✓ optimised pre-dilutions of samples & standard
- duplicate testing (using independent predilutions)
- ✓ WHO 7th IS for rabies vaccine in each plate to express results in IU/mL
- ✓ blank wells for assessment of assay quality
- ✓ 3 independent assays, balanced plate layout

Phase 2 . Collaborative study outline

٠

- Participants 31 laboratories : public/NCLs & manufacturers
 - Europe, North & South Africa, North & South America, Asia
- Test samples
 set of 11 marketed vaccines covering 5 virus strains and various potencies
 WHO IS for Rabies vaccines (inactivated, non-absorbed 7th IS)

• Study protocol • Common ELISA SOP with standardised critical reagents (antibodies & detection conjugate)

- optional, as available : *in-house* ELISA method
- Standard reporting sheets
- Central statistical analysis

Phase 2 . Collaborative study outline

- 2020/12-2021 dispatch of samples to participants
 - technical support for method transfer (trouble-shooting and adjustment of testing conditions)
 - 2022/02 25/31 laboratories reported results for 10 samples
 - 10 laboratories reported results for an additional 11th sample (procured in 2021)
 - 2023/04 · central data analyses & Phase 2 report
 - 2 analysis models : all datapoints (5PL), linear part of dose-respone curves (PL)
 - all datatsets & subset of datasets from assays complying to the SOP
 - evaluation of possible assay suitability criteria (slope, inflection point, OD₅₀,...)

<u>NOTE</u>: due to the limited availability of the samples, the study timeline and the pandemic context, some reported data were generated from sub-optimal assays

Step 2: evaluation of the selected method for global use (BSP148) . Phase 2 conclusions

✓ Applicability

© EDQM, Council of Europe, 2024. All rights reserved.

 similar between participants' and centrally calculated values ✓ Potency estimates all confidence limits within 80-125% ✓ Assay precision \rightarrow satisfactory despite sub-optimal method transfer Mean variation (gCV) Assay repeatability <15% for most laboratories^{*} <1-2% in some laboratories * largest variation for laboratories optimising testing conditions in-between reported assays \rightarrow satisfactory intra-laboratory variation despite limited proficiency in method ✓ Assay reproducibility • inter-laboratory variation of gMeans : 5.9-12.9%* depending on sample * higher variation with some samples requiring higher pre-dilutions \rightarrow linked to the efficiency of method transfer & proficiency \rightarrow satisfactory inter-laboratory variation despite sub-optimal method transfer

• to all tested strains : PM, PV, Flury-LEP, aGV, CTN (and at least 1 additional strain)

Phase 3. Reporting phase : applicability to routine batch testing

Launched 2023/12

'simulation of a real life situation'

→ testing of as many batches of different products as possible with the standardised GP ELISA to generate data supporting the discussions on future specifications & assay validity criteria

Participants • 19-25* laboratories : public/NCLs & manufacturers, in all regions with - access to routine batches of marketed vaccines - fully transferred GP ELISA

* including 4 new study participants

Method

- GP ELISA SOP used in routine (no imposed lot of critical reagents)
 - WHO 7th IS as standard to express results in IU
- Test samples non-expired lots from routine production (no sample provided by EDQM)
- data reporting by 12/2024
- central data analysis at EDQM & study report elaboration

Step 2: BSP148 project timeline

\checkmark	Phase 1 (preparatory phase)	2016-2020
\checkmark	Phase 2 (collaborative study)	2021-2023
	✓ Technical workshop (study participants)	2021-2023
>	Phase 3 (reporting phase)	2024 -2025
0	Publication of the BSP148 study outcomes	
0	Symposium - for discussions on method implementation	2025
0	Proposal for the global replacement of the in vivo potency test by a standardised ELISA (revision of compendial texts & WHO guidelines)	

BSP148 study participants

19 official control & public laboratories and 12 manufacturers additional 4 laboratories joining after Phase 2

Thank you for your attention

Stay connected with the EDQM

EDQM Newsletter: https://go.edqm.eu/Newsletter LinkedIn: https://www.linkedin.com/company/edqm/ X: @edqm_news Facebook: @EDQMCouncilofEurope

