Substituting *In Vitro* for *In Vivo* Potency and Safety Assays: Science Versus the Fear Factor

Dean Smith Ph.D.
Centre for Vaccines Clinical Trials and Biostatistics, Health Canada
Webinar: Transition to non-animal-based vaccine batch release testing
The Humane Society of the United States
March 27, 2024
Acknowledgments

European Directorate for the Quality of Medicines (EDQM) Vaccines Working Group (Groups 15 and 15V) for *In Vitro* Substitution (Ph. Eur. 5.2.14) Initiated 2012 implemented in 2018

Arnoud Akkermans (Netherlands)
Thea Sesardic (UK)
Kaare Hasløv (Denmark)
Lukas Bruckner (Switzerland)
Emmanuelle Charton (EDQM)
Gwenaël Cirefice (EDQM)

Laurent Mallet (France / now EDQM)
Paul Stickings (UK)
Svein Andersen (Norway)
Dean Smith (Canada)
Eva Vitkova (EDQM)
Group 15 and 15 V Expert contributors

Center for Biologics Evaluation and Research (CBER), USA/FDA
Robin Levis (Group 15, non-WG contributor)

Health Canada (non-Group 15 contributors)
Jerry Claver, Maria Baca-Estrada, Richard Isbrucker, Tong Wu, Richard Siggers
Overview

• The barrier to the transition from *in vivo* to *in vitro* assays for key legacy public health vaccines is the stories we believe that create a negative feedback loop.

• If regulators believe that *in vivo* assays are essential to maintain the safety of vaccines, and they are perceived as non-supportive of change, industry will not invest in innovation and new assays, and no change can occur.

• The path forward is a more science-based, less fear-driven, risk-aware mindset that Ph. Eur. 5.2.14 approaches support.

Key Message: The *in vivo* assay dilemma is resolvable for legacy vaccines through data driven critical thinking by regulators, as well as by industry, to developed stories that better reflect reality to circumvent the negative feedback loop.
How industry feels about regulations...

“Regulatory audit today?”
What is the goal ... what are the hurdles?

Relevant:
- Quality
- Safety
- Efficacy
- Manufactured Vaccine
- Availability

Requires:
- Innovative thinking by regulatory authorities and industry
- Science-based decision making to support manufacturing and testing strategies that can lead to global regulatory harmonization / convergence
Vaccine QC without *in vivo* testing

Many vaccines are controlled through production, lot release & stability testing without the use of *in vivo* assays:

- **Human Papilloma Virus (HPV) Vaccines**: recombinant viral-like particles (VLP) plus adjuvant(s), controlled with physical chemical methods and ELISA

- **Meningococcal and Pneumococcal Bacterial Conjugate Vaccines**: defined polysaccharides conjugated to carrier proteins, controlled with physical chemical methods

- **EMA and North American authorized COVID-19 Vaccines**: exclusively use *in vitro* QC assay control strategies regardless of platform (e.g., mRNA, subunit, viral vector, etc.), animal use is restricted to proof of concept and other preclinical studies

Key Message: Modern QC control strategies for vaccines involve a combination of physical chemical & *in vitro* methods to monitor the critical quality attributes (CQA) to maintain the efficacy, safety profile and product shelf-life profile established at licensure.
Quality is built into the process

- Design, development, in-process controls, cGMP
- Consistency monitoring; a vaccine may be tested > 300 times before release

- Approved rabies vaccines in North America and Europe have been manufactured and formulated using *in vitro* assays for decades, and then potency tested with NIH animal assay
- Typically conjugate bacterial vaccine label claims are in µg/mg of defined components (i.e., specific polysaccharides or adjuvant)
Yet *in vivo* testing for vaccines persists

Ph. Eur. 5.2.14 project initiated 2012, because EU 3R regulations did not prevent delays with *in vitro* assay implementation, or result in the deletion scientifically irrelevant *in vivo* tests:

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies NIH test</td>
<td>45 yrs. of assay development (e.g., Single Radial Immunodiffusion (SRID), in vitro neutralization & stability indicating glycoprotein (GP) ELISA) but no implementation</td>
</tr>
<tr>
<td>GST / Abnormal Toxicity</td>
<td>20 yrs. of effort in EU (PEI) for GST deletion but, the GST was still in human. vaccine licences in EU, NA & in WHO / national vaccine guidance worldwide</td>
</tr>
<tr>
<td>Pertussis vaccine HIST¹</td>
<td>20 yrs. no implementation of alternative in vitro assays for HIST for Eur. Ph., WHO or national guidance</td>
</tr>
<tr>
<td>Toxoid irreversibility tests</td>
<td>Decades of stability data for vaccine toxoid stability, yet in vivo irreversibility testing still generally required</td>
</tr>
<tr>
<td>DPT² potency & safety tests</td>
<td>Lack of progress with over decades with the implementation of in vitro methods via conventional pathways</td>
</tr>
<tr>
<td>Rabbit pyrogenicity</td>
<td>Preferred by most authorities over a monocyte activation test (MAT)</td>
</tr>
</tbody>
</table>

Key Message: Scientific, less animal-centric mindset was needed at an international level to implement alternative *in vitro* assays, required for world markets by vaccine manufacturers.

¹Histamine Sensitization Test (HIST): to demonstrate absence of pertussis toxin in human pertussis toxoid vaccines

²Diphtheria (D), Pertussis (P) and Tetanus (T) combination vaccines
Key limitations of *in vivo* assays & considerations with *in vitro* alternatives

Decades of failed reforms efforts prompted EDQM Group 15 & 15 V to deconstruct the myths perpetuating the use *in vivo* assays in Ph. Eur. 5.2.14:

- Variability of *in vivo* assays resulted in multiple failures of multi-centre international collaborative studies requiring one-to-one comparison with consistent *in vitro* methods (e.g., for alternatives to NIH rabies test).

- Most *in vivo* assays predate ICH Q2 (R1) or VICH GL2 guidelines, yet considered validated since they are compendial. Hence, one-to-one comparisons are challenging, or not possible in some cases because precision, reproducibility, limits of detectability, etc., not established for the *in vivo* method or would be unethical or against EU conventions to do so retrospectively.
Key limitations of *in vivo* assays & considerations with *in vitro* alternatives

Deconstruct the myths continued:

- While properly established *in vivo* methods have the potential to measure complex functional responses for demonstrating proof of concept, they **do not** predict the responses in the target population. They are merely, highly variably bioassays.

- *In vitro* alternative assay QC strategies, using one or more new methods, will likely assess the same quality attribute differently. Hence, the expectation of a one-one agreement between *in vitro* and *in vivo* assays may not be scientifically justified. Yet, the *in vitro* test strategy can and must provide at least the same confidence regarding the control of the key quality attributes. Case studies support this expectation.
A new approach for both human and veterinary vaccines

Substitution as an alternative approach for \textit{in vitro} assay implementation:

- **Replacement:** Involves a one-to-one comparison and establishment of a correlation between the two methods (e.g., \textit{in vitro} to \textit{in vivo}).
- **Substitution:** To facilitate the implementation of \textit{in vitro} methods as substitutes for existing \textit{in vivo} methods, \textit{in cases} where a typical one-to-one assay comparison is not appropriate for reasons unrelated to the suitability of one or more \textit{in vitro} methods (Ph. Eur. 5.2.14).
- **Stability Indicating:** Quality parameters (direct or indirect indicators of vaccine efficacy or safety) that are sensitive to storage conditions. These parameters are used in stability studies to assure product quality throughout the shelf-life. Determination of these parameters should result in quantitative values with a detectable rate of change (WHO TRS 999, Annex 5, Vaccine Stability Guidance Definition).
Updating Stories: Histamine Sensitization Test (HIST)

A brief history of the HIST for the detection of residual pertussis toxin (PTx) bacterial vaccines

- **Introduced**: Japanese Pharmacopeia in 1981 and in 1991 to the Ph. Eur..

- **Basis of the HIST test**: Mice naturally resistant to histamine, but exposure to *B. pertussis* decreases LD50 to histamine up to 300 fold, purified PTx acts similarly.

- **Lethal end point and temperature change methods protocols**: Groups of mice injected with different doses of PTx or test vaccine, after 4 to 5 days animals are challenged with histamine, mortality or temperature change is the read out. HIST LOD is 1-2 IU / dose. At least 6 different international protocols are described for various jurisdictions (e.g., Canada, China, EU, Japan, USA and WHO).

Key Message: As with all *in vivo* tests, the HIST is a highly variable assay, that can result in false positive and inconclusive tests, which can cause delayed release of lots, and even product shortage in some instances. Such a test cannot be scientifically justified unless no alternate test strategy is available, yet it persists due the belief by regulators that the HIST is central to maintaining the safety of pertussis toxoid childhood vaccines.
Updating Stories: HIST cont’d

Considerations for *in vitro* assays to the HIST:

- Several methods developed for adjuvanted final bulk / final product
- One considered for Ph. Eur. with LOD like HIST (1-2 IU/dose)
- However, if pertussis toxoid stable (no reversion), consistent manufacturing record, is final bulk / final product testing required?
- PTx has no defined LD50 in humans, unlike T & D toxins
- Rat and Mouse PTx LD50 2,000 - 17,000 IU/kg body weight & PTx in whole cell pertussis vac 100-350 IU/mL
- Validated DS in process test with lower LOD than the HIST is in general use

Chinese hamster ovary (CHO) cell PTx *in vitro* DS test: Described in 1983, CHO cells cluster (but do not die) in the presence of PTx. LOD approximately 0.006 IU/dose. Manufactures use validated CHO method for PTx detection at DS post-detoxification, prior to adjuvant addition (adjuvant toxic to CHO cells)

Story Update: For non-reverting pertussis toxoids, validated CHO PTx *in vitro* assay at DS post-detoxification sufficient. Hence, HIST could be deleted if the above conditions were met.

Updating Stories: 2015 EPAA Workshop impact on Ph. Eur. 5.2.14

• Industry (Sanofi) stressed resource drain with multiple versions of in vivo potency and safety assays for several DPT vaccines: lot release delays with month long in vivo assays / invalid tests / repeat testing impacting otherwise compliant lots and causing vaccine shortages.

• Germany’s authority (PEI) presented the clear case for no scientific rationale to retain the so-called General Safety Test (GST). Designed as a phenol test for tetanus antitoxins in the early 1900s, lost scientific relevance for in QC for vaccines decades ago.

• UK’s national control laboratory (NIBSC, now MHRA) presented in vitro (ELISA) results and in vivo potency assays for diphtheria (D) and tetanus (T) products. Demonstrated higher sensitively and improved stability indicating potential of the in vitro methods.

The key GST and DT in vitro potency conclusions from the EPAA Workshop were presented to Group 15 and greatly helped drive the 5.2.14 development and GST deletion efforts to completion.

Key Message: Initial work by industry and innovative regulators was central to the development of Ph. Eur. 5.2.14, and contributed to the establishment of VAC2VAC.
What Eur. Ph. 5.2.14 states concerning *in vivo* and *in vitro* assays for vaccine QC

- All QC methods “*should ensure comparability of the quality attributes between commercial batches and those batches originally found to be safe and efficacious in clinical studies or, for veterinary vaccines, in the target species.*”

- However, “*the inherent variability of in vivo assays can make them less suitable than appropriately designed in vitro assays for monitoring consistency of production and for assessing the potential impact of manufacturing changes. As a result, it is essential to continually challenge the scientific value and relevance of these in vivo test methods.*”

- “*The use of appropriate in vitro methods … enhances the predictability of the release of safe and effective vaccine lots for use.*”

Key Message: Group 15 moved past the fear related to the loss of animal assays. This was the result of an evidence-based discussion, where long standing beliefs (myths) were challenged and put aside.
Key Elements of Alternate 5.2.14 Approach

• The primary focus for the implementation of any proposed *in vitro* method within a QC system should be the scientific relevance of the *in vitro* assays for control of the critical quality attributes.

• While in the Ph. Eur., *in vivo* assay replacement with *in vitro* assays is typically achieved following multicentre collaborative studies, this should not be a prerequisite for individual products.

• While it may be desirable to have assays that are widely applicable to a class of products, this should not be a requirement.

• In some cases, an existing *in vivo* method may need to be substituted by more than 1 *in vitro* method to characterise the critical qualitative and quantitative attributes measured by the existing test.
Alternate 5.2.14 Approach cont’d

Considerations regarding key principles and approaches with specific types of assay are presented in Ph. Eur. 5.2.14

• Potency assays:
 – Design of stability indicating assays, or combinations of alternate methods to capture critical quality attributes (CQA) related to potency is discussed
 – General fit for purpose principles are also discussed

• Safety assays:
 – Considerations for different types of assay are presented for:
 • Specific Toxicity
 • Molecular consistency by Next Generation Sequencing (NGS) versus the neurovirulence test
 • Detection of viral extraneous agents by molecular methods, such as NGS
Progress post-Ph. Eur. 5.2.14 Implementation

Rabies NIH Test
A GP ELISA was suggested as model assay for substitution in Eur. Ph.5.2.14, and the first GP ELISA was approved to substitute for the NIH test in 2023.

GST / Abnormal Toxicity
Removed Ph. Eur., WHO discontinues test from future vaccine & biologics documents, all previous recommendations for test should be disregarded.

Pertussis (P) HIST

PT Irreversibility of toxoid
Removed Ph. Eur., toxoid stable & test not scientifically relevant.

Tetanus (T) Specific Toxicity
Removed Ph. Eur., controlled at DS, GP test & validation of stable toxoid.

T Irreversibility of toxoid
Removed Ph. Eur., toxoid stability confirmed, toxin loss of activity under test conditions (37°C).

Diphtheria (D) Specific Toxicity
Removed Ph. Eur. with validation of stable toxoid (no *in vivo* test for toxicity).

Rabbit Pyrogenicity Test (RBT)
Draft Gen. Ch. 5.1.13 Pyrogenicity, to support suppression of RBT, “suitable” test options for BET in Ph. Eur. 2.6.14 or 2.6.32, or non-BET MAT Ph. Eur. 2.6.30.

MAT-Inherently pyrogenic vac.
Progress post-Ph. Eur. 5.2.14 Implementation cont’d

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
</table>
| Adventitious Agent Testing | Ph. Eur. Gen. Ch. 2.6.16 Tests for extraneous agents in viral vaccines for human use
 | Ph. Eur. Gen. Ch. 5.2.3 Cell substrates for production of vaccines for human use
 | Draft Ph. Eur. Gen. Ch. 2.6.41 High-Throughput sequencing for viral extraneous agents |
| DT Potency & Safety Tests | *In vitro* assays in development through VAC2VAC consortium in consultation with EDQM and EMA in process |
| QC for COVID-19 Vaccines | Currently authorized vaccines in North American and EU use only *in vitro* QC methods (while not linked to Ph. Eur. 5.2.14, but consistent with the same principles) |
| WHO “5.2.14-like” TRS | WHO Drafting Group initiated by WHO ECBS, based on recommendation of NC3Rs report and the success of Ph. Eur. 5.2.14 |

Key Message: Rigorous scientific debate and questioning of beliefs lead to remarkable changes. Group 15 expeditiously amends the Ph. Eur. with to fit the science, which supports innovation and change in the EU and at WHO.
Next steps

• As per Ph. Eur. 5.2.14, Group 15 will continue to examine the scientific rationale for existing *in vivo* potency and safety assays with a more informed and science-based approach.

• With the increasing acceptance of the Ph. Eur. 5.2.14 principles by regulators and WHO, manufacturers are more likely to develop *in vitro* methods for vaccine characterization, in process control and QC release assays, as substitutes for existing *in vivo* methods for legacy vaccines.

• Global acceptance of appropriately developed stability indicating *in vitro* QC control strategies is essential, given the word market for vaccines.

• Use of non-animal vaccine characterization and QC release strategies for rapid development of COVID-19 pandemic vaccines further demonstrates the value of this approach.

• **All of the above should accelerate the transition from *in vivo* QC assays to more effective and robust *in vitro* alternative methods for all vaccines.**
Thank-You!

Questions?