EXPLOITING MONOCYTE ACTIVATION TEST: The experience of Istituto Superiore di Sanità

Eliana M. Coccia and Marilena P. Etna

Department of Infectious Diseases May 25th, 2023

⑦ ◎ ¥ ☑ www.iss.it/malattie-infettive

ISTITUTO SUPERIORE DI SANITÀ [ISS]

MISSION: Promotion and protection of national and international public health through research, surveillance, regulation, control, prevention, communication, counseling and training activities.

Cterring Crimical Connection Conn

Technical-scientific services Biological Service Core facilities Grant office and technology transfer

Research coordination and support Statistics

Departments

Cardiovascular, dysmetabolic and ageing-associated diseases Environment and health Food safety, nutrition and veterinary public health Infectious diseases Neurosciences Oncology and molecular medicine

🚯 💿 🔰 💽 🛛 www.iss.it/malattie-infettive

IMMUNOLOGY UNIT

Ongoing studies:

- Immune-pathogenic mechanisms of infectious diseases and escaping strategies evolved by pathogens;
- ✓ gene expression in response to infectious agents;
- ✓ immunotherapy of infectious diseases;
- ✓ alternative experimental model to test in vitro vaccine pyrogenicity and potency.

🚯 💿 🎔 📭 🛛 www.iss.it/malattie-infettive

MAT at the **Italian National Institute of Health** (Istituto Superiore di Sanità)

MAT Unit **INFECTIOUS DISEASES**

> Eliana M. Coccia (Head of MAT Unit) Marilena P. Etna (Expert of MAT Unit) Fabiana Rizzo (Analyst) Ramona Ilari (Analyst)

www.iss.it/malattie-infettive 0

0 May 25th, 2023

0

PYROGENS IN THE Ph. Eur.

GENERAL MONOGRAPHS

- Substances for pharmaceutical use [2034].
- Radiopharmaceutical preparations [0125].
- Immunosera for human use, animal [0084].

DOSAGE FORM MONOGRAPHS

- Parenteral preparations [0520].
- Preparations for irrigation [1116].
- Intravesical preparations [2811].

PYROGENS (2.6.8 Chapter) [RABBIT PYROGEN TEST] 60 TEXTS

GENERAL CHAPTERS

PLASTICS

- Sterile plastic. Containers for human blood and blood components [3.3.4].
- Sets for the transfusion of blood and blood components [3.3.7].

VACCINES FOR HUMAN USE

 Carrier proteins for conjugated polysaccharide vaccines for human use [5.2.11].

INDIVIDUAL MONOGRAPHS

- Solutions [4].
- Blood products [17].
- Vaccines for human use [17].
- Antibiotics [8].
- Other chemical substances [4].

🚯 💿 🎔 🖸 🛛 www.iss.it/malattie-infettive

DIRECTIVE 2010/63

Substitution with non-animal technologies is mandatory in EU

20.10.2010

EN

Official Journal of the European Union

L 276/33

DIRECTIVES

DIRECTIVE 2010/63/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 22 September 2010

on the protection of animals used for scientific purposes

(Text with EEA relevance)

🚯 💿 🎔 📭 www.iss.it/malattie-infettive

DEPARTMENT INFECTIOUS DISEASES

BIG CHANGES in the Ph. Eur.

DEPARTMENT INFECTIOUS DISEASES

🚯 💿 🎔 📭 www.iss.it/malattie-infettive

There are currently 59 Ph. Eur. texts – covering a variety of topics including vaccines for human use, blood products, antibiotics, radiopharmaceuticals and containers – that refer to the RPT and will be affected. The Ph. Eur. is committed, for all these texts, to replacing the test for pyrogens with a suitable in-vitro alternative, ultimately leading to the complete elimination of the RPT. In the meantime, users are actively encouraged to seek alternatives to chapter 2.6.8, the best option being the MAT.

Throughout the process, users will have the opportunity to comment on a case-by-case basis, since each of the texts concerned will go through the standard public enquiry in Pharmeuropa.

DEPARTMENT INFECTIOUS DISEASES

G
 Image: Second system

 Way 25th, 2023

REPLACEMENT OF CHAPTER 2.6.8: proposed strategy:

Consolidated strategy approved by the European Pharmacopoeia Commission in June 2022

🚯 💿 🔰 🖸 🛛 www.iss.it/malattie-infettive

From EDQM-EPAA RPT event 14-16 February 2023

🕜 💿 🎐 🖸 May 25th, 2023 www.iss.it/malattie-infettive

EUROPEAN PHARMACOPOEIA 11.0

07/2017:20630 corrected 11.0

2.6.30. MONOCYTE-ACTIVATION TEST

1. INTRODUCTION

The monocyte-activation test (MAT) is used to detect or quantify substances that activate human monocytes or monocytic cells to release endogenous mediators such as pro-inflammatory cytokines, for example tumour necrosis factor alpha (TNF α), interleukin-1 beta (IL-1 β) and interleukin-6 (IL-6). These cytokines have a role in fever pathogenesis. Consequently, the MAT will detect the presence of pyrogens in the test sample. The MAT is suitable, after a product-specific validation, as a replacement for the rabbit pyrogen test.

Pharmaceutical products that contain non-endotoxin pyrogenic or pro-inflammatory contaminants often show very steep or non-linear dose-response curves in comparison with endotoxin dose-response curves. Preparations that contain or may contain non-endotoxin contaminants have to be tested at a range of dilutions that includes minimum dilution.

🚯 💿 🎔 🖸 🛛 www.iss.it/malattie-infettive

⑦ ◎ ¥ ■ www.iss.it/malattie-infettive

VARIABLE PARAMETERS

CELL SOURCE

WHOLE BLOOD	PBMCs	MONOCYTIC CELL LINES
[POLIMORFONUCLEAR AND MONONUCLEAR CELLS]	[MONONUCLEAR CELLS]	[MONO-MAC-6 AND THP1]
Donor variability	Donor variability	Very low variability
For unspecified pyrogens	For unspecified pyrogens	For known pyrogens
Presence of cytokines and Abs in plasma	Basal activation due to PBMC isolation procedures	

www.iss.it/malattie-infettive

May 25th, 2023

0 🛛 🖌 🖸

PBMC ISOLATION (I)

Blood bag

Blood bag cleaning and opening

Blood transfer in a 50 ml tube

Blood stratification on a density gradient separation medium

⑦ ◎ ¥ ◎ www.iss.it/malattie-infettive

PBMC ISOLATION (II)

O y ■
 May 25th, 2023
 www.iss.it/malattie-infettive

How to face donor variability when using primary cells

Preserve qualified cells (-> preliminary assays to assess the quality of cells)

Ensure the long-term use of a cell source with robust results (**Creation of cell banks**)

🖻 🎔 📭 🛛 www.iss.it/malattie-infettive

Before starting...

- **1.** Ensure aseptic conditions while freezing cells
- 2. Define the optimal number of cells per vial to avoid low cell viability as well as unwanted cell clump (for PBMC 5 20 x 10⁶ cells/mL)

PBMC freezing workflow

5____

Tips & Tricks [I]

🗘 💿 🎔 📭 www.iss.it/malattie-infettive

Tips & Tricks [II]

O ⊙ ¥ ■ www.iss.it/malattie-infettive

Tips & Tricks [III]

www.iss.it/malattie-infettive 0 0 9 🖸

PBMC Thawing: before starting...

- 1. Ensure aseptic conditions while thawing cells
- 2. Warm thawing medium of choice in a 37°C water bath
- 3. Put warmed thawing medium in a 15 ml conic tube (sufficient for one vial of PBMC)

Rapid thawing helps to minimize any impact on cell recovery

Image: Second systemImage: Second system

PBMC thawing workflow [I]

Remove the cryovial from liquid nitrogen storage tank and place it in dry ice (no exposure to room temperature until thawing)

Place cryovial in 37°C water bath and thaw cells by swirling it until a little piece of ice remains

Wipe the outside of the cryovial with 70% ethanol or isopropanol before transferring into the biosafety hood

Image: Second systemImage: Second system

1

3

PBMC thawing workflow [II]

⁴ Add 1 ml of thawing medium (warm) **dropwise** directly into the cryovial then slowly transfer cell suspension in the conic tube pre-filled with warm thawing medium

Www.iss.it/malattie-infettive

May 25th, 2023

0

PBMC thawing workflow [III]

6 Mix by inverting the tube several times and then centrifuge at room temperature at 300 g for 10 minutes

- 7 Discard the supernatants and leave a small amount of medium to ensure the cell pellet is not disturbed
- Resuspend the pellet by gently flicking
 the tube and then add thawing medium and repeat the washing step

 Repeat action n°7 and then add an
 established volume of cell culture medium. Take a small aliquot for cell viability count

y ☑ www.iss.it/malattie-infettive

PBMC thawing workflow [IV]

Dilute cell suspension with trypan blue exclusion dye and, by using a hemocytometer, count 3 small squares of the chamber to calculate the cell number

Cells are now ready for use in downstream applications

READ-OUTS

Tumor Necrosis Factor [TNF] and interleukin [IL]-1 are the first cytokines to be released in sepsis and promote the secretion of IL-6. Together, these cytokines are the orchestrators during the pro-inflammatory phase in sepsis.

🕡 💿 🎐 🖸 🛛 www.iss.it/malattie-infettive

Critical factors for a successful ELISA procedure

Type of Antigens used in Licensed Vaccines

Type of Antigen	Features	Examples of Vaccines
Live-attenuated Vaccines	Live-attenuated vaccines contain live pathogens from either a bacteria or a virus that have been "attenuated," or weakened. They are produced by selecting strains of a bacteria or virus that still produce a robust immune response but that does not cause	Measles, Rubella, Parotitis, Varicella, Yellow Fever and Mycobacterium tuberculosis vaccines
Inactivated (non- replicating) Vaccines	Composed by inactivated or killed pathogens. They establish a strong immune response without causing disease. Multi-dose are often needed to build full protection. They can be easily produced without excessive cost	Hepatitis A virus, Poliomyelitis virus, and Influenza "split" or "fragmented" virus)
Subunit Vaccines	Produced through purification techniques of the bacterium/virus components interacting with the organism (they do not contain any live pathogen). They are suitable for people who should not receive "live" vaccines,	Haemophilus influenzae type B (Hib) vaccine (conjugate), Pneumococcal vaccine (polysaccharide or conjugate), Hepatitis B (recombinant protein), Acellular Pertussis, MenACWY (conjugate) and those containing the antigens of the influenza virus defined as
Anatoxin/Toxoid Vaccines	Inactivated toxins produced in most cases from proteins released by the micro-organism (toxins) to target the toxic activity created by the bacteria, rather than targeting the bacteria itself.	Tetanus vaccine and Diphtheria vaccine
Viral Vector Vaccines	Harmless virus genetically engineered to deliver to host cells the genetic code of an antigen against which immune system respond to fight the pathogen	Ebola vaccine, COVID-19 vaccine
Messenger RNA Vaccine	Composed of proprietary lipid nanoparticle delivery systems and mRNA optimized for stability and translation. They are based on a very adaptable technology.	COVID-19 Vaccine

⑦ ◎ ♥ ■ www.iss.it/malattie-infettive

Adjuvants used in Licensed Vaccines

Classification of adjuvants according to their main mechanism of action

Adjuvant Groups	Types of Adjuvants				
Delivery systems					
Mineral Salts	Aluminium salts				
Emulsions	Freund's adjuvants				
	MF59				
	AS03				
Microparticles	Virus-like particles				
0.000	Virosomes				
	PLA/PLGA				
Immune Potentiators					
TLR1/2 agonists	L-pampo, MALP-2, Pam2CSK4 and Pam3CSK4				
TLR3 agonists	Poly(I:C) (polyinosinic:polycytidylic acid)				
1	Poly-ICLC				
TLR4 agonists	Monophosphoryl lipid A (MPL)				
TLR5 agonists	Flagellin				
	Imiquimod (R837; 1-(2-methylpropyl)-1H-imidazo				
77 B7/8	[4,5-c]quinolin-4-amine) and resiguimod (R848,				
TLR7/8 agonists	4-amino-2-(etoximetil)-a,a-dimethyl-1H-imidazo				
	[4,5-c]quinoline-1-ethanol)				
TLR9 agonists	CpG ODNs				
Combined adjuvants	AS01 and AS02				
	AS04				
Mucosal adjuvants	Cholera toxin (CT)				
1997 - 1998 - 1999 - 1999 - 1998 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Heat-labile enterotoxin (LTK3 and LTR72)				
	Chitosan				

Facciolà A. et al, Vaccines 2022 9. doi.org/10.3390/vaccines10050819

www.iss.it/malattie-infettive

Other ingredients can be present in vaccine final formulation

Stabilizers

Purpose: To keep the vaccine effective after manufacturing

Most commonly found in: jell-OIB, naturally in the body

Examples: Sugars, gelatin

Adjuvants

Purpose: To help boost the body's response to the vaccine

Most commonly found in: Drinking water, infant formula, and some health products such as antacids, buffered aspirin, and antiperspirants

Examples: Aluminum salts

Residual inactivating ingredients

Purpose: To kill viruses or inactivate toxins during the manufacturing process

Most commonly found in: Naturally in the human body, fruit, household furnishings (carpets, upholstering)

Example: Formaldehyde†

Residual antibiotics

Purpose: To prevent contamination by bacteria during the vaccine manufacturing process

Most commonly found in: Common antibiotics. Antibiotics that people are most likely to be allergic to like penicilin—aren't used in vaccines.

Examples: Neomycin, Kanamycin, Streptomycin

Residual cell culture materials

Purpose: To grow enough of the virus or bacteria to make the vaccine

Most commonly found in: Eggs, and foods that contain eggs

Examples: Egg protein*

Preservatives

Purpose: To prevent contamination

Most commonly found in: Some kinds of fish

Example: Thimerosal (only in multi-dose vials of flu vaccine)*

https://www.cdc.gov/vaccines/vac-gen/additives.htm

🚯 💿 🎔 📭 www.iss.it/malattie-infettive

The type of antigen determines whether the product possesses or not intrinsic pyrogenicity

Based on product properties, different analysis methods may be employed to optimize **a product-specific MAT assay**

⑦ ◎ ¥ ■ www.iss.it/malattie-infettive

Definition of Limit of Detection [LOD]

The lowest analyte concentration to be reliably distinguished from the assay blank and at which detection is feasible

LOD in MAT

Identified as the endotoxin concentration corresponding to the <u>cut-off value</u>: mean[OD(blank cells)] + 3SD[OD(blank cells)]

LOD must be calculated also for non endotoxin pyrogens (NEPs)

Image: Second systemImage: Second system

Definition of Assay Sensitivity [AS]

The lowest endotoxin or NEP concentration detected in samples from several donors or pools

AS corresponds to the beginning of the linear part of the endotoxin or NEP standard curve

www.iss.it/malattie-infettive

Definition of Contaminant Limit Concentration [CLC]

CLC is the criterion for pass/fail decision

CLC is expressed as endotoxin equivalent with respect to the product to be examined (ml, mg or Units)

K= threshold of pyrogenic dose per kilogram of body mass M= maximum recommended bolus dose of product per kilogram of body mass

O O Y ■ www.iss.it/malattie-infettive May 25th, 2023

Definition of Maximum Valid Dilution [MVD]

The maximum valid dilution of a product at which the CLC can be determined

C = concentration of test solution

METHOD A: QUANTITATIVE TEST

It is intended for products/vaccines showing a parallel response respect to the dilutions of standard endotoxin.

Method A foresees a comparison of the preparation being examined with a standard endotoxin doseresponse curve.

From European Pharmacopoeia, Chapter 2.6.30

🕫 💿 🎔 📭 www.iss.it/malattie-infettive

METHOD A: QUANTITATIVE TEST

	Tabl	e 2.6.301	
olution	Solution	Added endotoxin (IU/mL)	Number of replicates
A	Test solution/f	None	4
.8	Test solution/2 $\times f$	None	4
С	Test solution/4 $\times f$	None	4
AS	Test solution/f	Middle dose from endotoxin standard curve (R ₁)	4
BS	Test solution/2 $\times f$	Middle dose from endotoxin standard curve (R ₂)	4
cs	Test solution/4 $\times f$	Middle dose from endotoxin standard curve (R ₁)	4
R ₉	Pyrogen-free saline or test diluent	None (negative control)	4
RR.	Pyrogen-free saline or test diluent	4 concentrations of standard endotoxin	4 of each concentration

PASS/FAIL CRITERIA

The endotoxin equivalent content of the preparation being examined should be less then the contaminant limit concentration (CLC)*;

The recovery of endotoxin in spiked test samples should fall within 50-200 %.

* The CLC is defined by considering the product dose, the route of administration and the sensitivity of the set-up MAT assay

From European Pharmacopoeia, Chapter 2.6.30

Image: Optimized state
 Image: Optimized

METHOD B: SEMI-QUANTITATIVE TEST

For products/vaccines showing a not parallel response respect to the dilutions of standard endotoxin.

Method B is based on the comparison between the preparation being examined and the standard endotoxin.

From European Pharmacopoeia, Chapter 2.6.30

www.iss.it/malattie-infettive

METHOD B: SEMI-QUANTITATIVE TEST

	Tabé	2.6.302	
Salation .	Solution	Added endetexts (IL/wd.)	Number of replicates
A	Test solution/Y	None	4
	That whation(),	New	4
c	Test solution(),	New	
38	Test solution() ⁴	Standard undetoxin at 2 = estimated LOD for the user system	*
	Test assistance);	Standard evolutions at 2 x estimated UOD for the test remains.	
a	Test solution (5	Bandard realistence at 3 x cotinuated LOO for the test andem	•
4	Progrades alloc or hid dilated	Noor (segative control)	€.
а,	Pyragan Dan salitor or bot difternt	Standard evaluation at E.5 x estimated LOD for the test system	•
х,	Prospendene solling of test different	Hundard endetmin at 1 = estimated LOD for the test spiern	•
А.	Prosponition subsector solt diffuent	Standard exclusion at 2 x estimated SOD for the test enten	
х,	Pytogen-fess salling or host diburnt	Number endetexts at 4 × estimated LOD for the test	4

PASS/FAIL CRITERIA The endotoxin equivalent content of the preparation being examined should be less then the CLC*; The response to solution R2 should be higher than an established cutoff value; To determine spike-in recovery, the mean response of the spiked solution is compared with the mean response to R3 (should fall within 50-200 %).

* The CLC is defined by considering the product dose, the route of administration and the sensitivity of the set-up MAT assay

From European Pharmacopoeia, Chapter 2.6.30

🚯 💿 🔰 💽 🛛 www.iss.it/malattie-infettive

METHOD C: REFERENCE LOT COMPARISON

Developed to address extreme donor variability in response to product containing endotoxin and/or nonendotoxin pyrogens (NEPs).

Method C compares the preparation being examined with a validated reference lot of that preparation. The type of analysis selected to compare the two is to be justified and validated for each product and is to include assay validity criteria.

From European Pharmacopoeia, Chapter 2.6.30

www.iss.it/malattie-infettive

METHOD C: REFERENCE LOT COMPARISON

	Table 2.6.303	
Solution	Solution/dilution factor	Number of replicates
A	Solution of reference lot/f ₁	4
В	Solution of reference lot/f2	4
с	Solution of reference lot/f,	4
D	Solution of preparation being examined/f ₁	4
E	Solution of preparation being examined/f ₂	4
F	Solution of preparation being examined/f ₃	4
G	Positive control (standard endotoxin)	4
R _e	Diluent (negative control)	4

www.iss.it/malattie-infettive

PASS/FAIL CRITERIA Sum the mean response to solution A, B and C and the mean response to solution D, E and F. Divide the sum of D, E and F with the sum of A, B and C. The preparation being examined complies with the test if the resulting value complies with a defined acceptance criterion.

meanD + meanE + meanF (PREPARATION BEING EXAMINED)

meanA + meanB + meanC (REFERENCE LOT)

From European Pharmacopoeia, Chapter 2.6.30

DEPARTMENT INFECTIOUS DISEASES

07/2017:20630 corrected 11.0 2.6.30. MONOCYTE-ACTIVATION The monocyte-activation test (MAT) is used to detect or The monocyte-activation test (MAL) is used to detect 0 quantify substances that activate human monocytes or monocytic cells to release endogenous mediators each quantity substances that activate human monocytes or monocytic cells to release endogenous mediators such as provinflammatory cytokines, for example tumour TEST as pro-inflammatory cytokines, for example tumour necrosis factor alpha (TNFa), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6). These cytokines have a role in fever monocytic cells to release endogenous mediators such as pro-inflammatory cytokines, for example tumour necrosis factor alpha (TNFn), interlenking) bera (II-) 1. INTRODUCTION necrosis factor alpha (INFa), interleukin-1 beta (IL-1\$) at interleukin-6 (IL-6). These cytokines have a role in fever nathonenesis. Consequently, the MAT will detect the prese interleukin-6 (IL-6). These Cytokines bave a role in fever pathogenesis. Consequently, the MAT will detect the presence of pyrogens in the test sample. The MAT is suitable, after a product-specific validation, as a replacement for the rabbit of pyrogens in the test sample. The MAT is suitable, after a product-specific validation, as a replacement for the rabbit Pharmaceutical products that contain non-endotoxin pyrogenic or pro-inflammatory contaminants often show with steen or non-linear dose-response curves in comparison with Pharmaceutical products that contain non-endotoxin Pharmaceutical products that contain non-endotoxin purpose or new-inflammatory contaminants often the pyrogenic or pro-inflammatory contaminants often show very steep or non-linear dose-response curves in comparison with endotoxin dose-response curves. Preparations that contain or steep or non-linear dose-response curves in comparison with endotoxin dose-response curves. Preparations that contain or may contain non-endotoxin contaminants have to be tested at endotoxin dose-response curves. Preparations that contain or may contain non-endotoxin contaminants have to be tested at a range of Atlutione that includes minimum dilution. pyrogen test. may contain non-endotoxin contaminants have to be a range of dilutions that includes minimum dilution.

WHAT'S NEW?

Revision of MAT monograph is ongoing to address certain difficulties reported by users and to facilitate the widest implementation of the MAT

🚯 💿 🔰 🖸 🛛 www.iss.it/malattie-infettive

Ongoing revision of MAT in Ph. Eur (chapter 2.6.30) [I]

MVD calculation: To allow consistent calculation and better comparability among different MAT setups, it has been proposed to replace LOD with AS [AS is a point of standard curve and not a calculated value]

Validity criteria Endotoxin standard curve: Use of non-linear regression model and less strict criteria for the standard curve (i.e., parallelism requirement deleted)

DEPARTMENT INFECTIOUS DISEASES

Ongoing revision of MAT in Ph. Eur (chapter 2.6.30) [II]

To merge Methods A and B into a single Method ("Method 1")

For products not inherently pyrogenic

For inherently pyrogenic products

Test for interfering factors: Replacement of current spiking dose 2xLOD with an amount of endotoxin equal or near to the middle of endotoxin standard curve

Image: Optimized state
 Image: Optimized

01/2005:1375

TICK-BORNE ENCEPHALITIS VACCINE (INACTIVATED)

Vaccinum encephalitidis ixodibus advectae inactivatum

DEFINITION

Tick-borne encephalitis vaccine (inactivated) is a liquid preparation of a suitable strain of tick-borne encephalitis virus grown in cultures of chick-embryo cells or other suitable cell cultures and inactivated by a suitable, validated method.

FINAL LOT

Only a final lot that is satisfactory with respect to each of the requirements given below under identification. Tests and Assay may be released for use. Provided that the tests for free formaldehyde, bovine serum albumin (where applicable) and pyrogens and the assay have been carried out with satisfactory results on the final bulk vaccine, they may be omitted on the final lot.

IDENTIFICATION

The vaccine is shown to contain tick-borne encephalitis virus antigen by a suitable immunochemical method (2.7.1) using specific antibodies or by the mouse immunogenicity test described under Assay.

TESTS

Aluminium (2.5.13): maximum 1.25 mg per single human dose, if aluminium hydroxide or hydrated aluminium phosphate is used as the adsorbent.

Free formaldehyde (2.4.18): maximum of 0.1 g/l.

Bovine serum albumin. If bovine serum albumin has been used during production, the vaccine contains not more than 50 ng per single human dose, determined by a suitable immunochemical method (2.7.1).

Sterility (2.6.1). The vaccine complies with the test for sterility.

Pyrogens (2.6.8). The vaccine complies with the test for pyrogens. Inject into each rabbit, per kilogram of body mass, one dose of vaccine.

> DEPARTMENT INFECTIOUS DISEASES

🗘 💿 🎐 🖸 🛛 www.iss.it/malattie-infettive

Tick-borne encephalitis virus [TBEV]

NO INTRINSIC PYROGENICITY

DEPARTMENT INFECTIOUS DISEASES

🚯 💿 🎐 🖸 🛛 www.iss.it/malattie-infettive

Production process of TBEV vaccine

 Background Document on Vaccines and Vaccination against Tick-borne Encephalitis [<u>Vaccine.</u> 2011;29(48):8769-70]

(2) Tick borne encephalitis virus vaccines.[Vaccines pp. 841-856]

www.iss.it/malattie-infettive

TBEV (active substance) is cultivated chicken embryo cells, clarified by centrifugation, inactivated with formalin and then purified to produce the vaccine virus stock. Pools of different purified virus stock were formulated with aluminum hydroxide (adjuvant)

Embryo harvest from chicken eggs or the virus propagation could entail the risk of bacterial, viral or cellular contaminants entering the final product

🕜 💿 🎐 D May 25th, 2023

vac2vac

- http://www.imi.europa.eu/
- http://www.vac2vac.eu/

VAC2VAC - Vaccine batch to vaccine batch comparison by consistency testing

One of the objective of VAC2VAC project was the development and the optimization of cellular assays based on analysis of human tick-borne encephalitis virus (TBEV) vaccine-induced activation of primary APC.

To replace the existing pyrogenicity test in rabbit by performing the monocyte activation test MAT assay described in the European Pharmacopoeia by using human peripheral blood mononuclear cells (PBMC).

🕫 💿 🎔 📭 🛛 www.iss.it/malattie-infettive

Setting of MAT conditions for the TBEV vaccine [I]

- Qualification of cell source -

The MAT optimized for the TBEV vaccine was set-up by using as cell source cryopreserved **peripheral blood mononuclear cells (PBMCs)**. According to Ph.Eur., human PBMCs have been qualified by assessing:

- PBMC viability
- Reproducibility of the response to scalar doses of reference standard endotoxin (RSE)

Image: Second systemImage: Second system

Setting of MAT conditions for the TBEV vaccine [I]

- Qualification of cell source -

Tab. 1: Follow-up study on cell viability and responsiveness to RSE in cryopreserved PBMC

Stability and responsiveness of cryopreserved peripheral blood mononuclear cells (PBMC) were assayed by testing cell viability and IL-6 release after stimulation with RSE in cells thawed after 6, 12 and 18 months storage in liquid nitrogen. Etna MP et al. 2020 ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

	Cell viabilit	ty (%)		RSE 0.2 EU/mL (IL-6 pg/mL)			RSE 0.4 EU/mL (IL-6 pg/mL)		
	6 months	12 months	18 months	6 months	12 months	18 months	6 months	12 months	18 months
PBMC_Donor 1	89.0	93.0	93.0	566	480	400	1200	1324	896
PBMC_Donor 2	91.2	95.5	95.5	500	455	475	1000	1000	1000
PBMC_Donor 3	95.0	92.0	91.0	410	370	430	1200	813	1200
PBMC_Donor 4	91.0	93.7	90.0	502	500	394	1213	1000	924

- PBMCs remain viable (≥ 90%) when stored at -196°C up to 18 months
- Response to scalar doses of RSE is reproducible and stable up to 12 and 18 months after PBMC freezing

G ⊙ ♥ C www.iss.it/malattie-infettive May 25th, 2023

Setting of MAT conditions for the TBEV vaccine [II]

- Choice of the Read-out-

IL-6 was chosen as read-out providing the robust production as compared to TNF- α and IL-1 β after PBMCs stimulation with RSE, and the two non-endotoxin TLR agonists R-848 and FSL-1.

🚯 💿 🔰 🖸 🛛 www.iss.it/malattie-infettive

Setting of MAT conditions for the TBEV vaccine [III] - Preparatory Tests -

ASSURANCE OF CRITERIA FOR ENDOTOXIN STANDARD CURVE

- The test is performed with 4 replicates of at least 4 standard endotoxin concentrations
- The purpose is to verify whether the experimental conditions employed for the assay ensure a linear response to different RSE doses:
 - A statistically significant regression of response on Log₁₀ dose of RSE (p < 0.01)
 - Not significant deviation of RSE Log₁₀ dose from linearity (p > 0.05)

Image: Optimized systemImage: Optimized system</td

Setting of MAT conditions for the TBEV vaccine [III] - Preparatory Tests -

ASSURANCE OF CRITERIA FOR ENDOTOXIN STANDARD CURVE

Source of var	ation	Degrees of freedom	Sum of squares	Mean square	F-ratio	Probe	sbility
Regression		1	9.26024	9.26024	801.166	0.000	(***)
Non-linearity		2	0.0881724	0.0440862	3.814	0.052	
Treatments		3	9.34842	3.11614	269.598	0.000	(***)
Residual error		12	0.138702	0.0115585		1.1.1.1.1.1	100.00
Total		15	9.48712	0.632475			

Modified from Etna MP et al. 2020 ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

🚯 💿 🎔 📭 www.iss.it/malattie-infettive

Setting of MAT conditions for the TBEV vaccine [IV] - Preparatory Tests -

TEST FOR INTERFERING FACTORS

The aim of the test is to verify whether the product to be tested (i.e., the vaccine) interferes with the detection of endotoxin contaminants

 The test is conducted by spiking a justified and fixed concentration of RSE into different dilution of the product (vaccine).

Image: Second systemImage: Second system

Setting of MAT conditions for the TBEV vaccine [IV] - Preparatory Tests -TEST FOR INTERFERING FACTORS

Modified from Etna MP et al. 2020 ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

Setting of MAT conditions for the TBEV vaccine [V] - Preparatory Tests -

INTERFERENCE IN THE DETECTION SYSTEM

 The aim of the test is to verify whether the product to be tested (i.e., the vaccine) interferes (at technical level) with ELISA procedure.

 The test is conducted by spiking a fixed amount of the product into the standard recombinant protein curve inserted in the ELISA plate.

Image: Second systemImage: Second system

Setting of MAT conditions for the TBEV vaccine [V] - Preparatory Tests -

INTERFERENCE IN THE DETECTION SYSTEM

Tab. 2: Evaluation of Encepur interference with the ELISA procedure

Five doses of Encepur (V1 = 1 μ g/mL [1:3], V2 = 0.5 μ g/mL [1:6], V3 = 0.25 μ g/mL [1:12.5], V4 = 0.125 μ g/mL [1:25] and V5 = 0.0625 μ g/mL [1:50]) were added to the IL-6 standard curve. The interference of Encepur with the ELISA procedure was evaluated by considering optical density values of the IL-6 standard alone or in combination with the vaccine.

Standard Standard+V		ard+V1	Standard+V2		Standard+V3		Standard+V4		Standard+V5		
pg/mL	OD	OD	Interference (%)	OD	Interference (%)	OD	Interference (%)	OD	Interference (%)	OD	Interference (%)
600	2.629	2.549	-3.4%	2.507	-4.6%	2.580	-1.86%	2.415	-8.1%	2.535	-3.5%
300	1.788	1.770	-1.0%	1.818	+1.6%	1.579	-11.6%	1.719	-3.8%	1.662	-7.0%
150	1.095	1.061	-3.1%	1.024	-6.4%	0.924	-15.6%	1.001	-8.5%	0.980	-10.5%
75	0.593	0.555	-6.4%	0.565	-4.7%	0.500	-15.6%	0.562	-5.2%	0.526	-11.2%
37.5	0.294	0.240	-18.3%	0.291	-1.0%	0.244	-17.0%	0.276	-6.1%	0.265	-9.8%
18.8	0.140	0.131	-6.4%	0.130	-7.1%	0.111	-20.0%	0.116	-17.1%	0.120	-14.2%
9.38	0.076	0.073	-3.9%	0.062	-18.4%	0.068	-10.5%	0.068	-10.5%	0.066	-13.1%

Etna MP et al. 2020 ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

Acceptance criterium: Interference fall within +/- 20%

Setting of MAT conditions for the TBEV vaccine [VI] - Preparatory Tests -

METHOD VALIDATION FOR NON-ENDOTOXIN MONOCYTE-ACTIVATING CONTAMINANTS

The purpose is to verify whether the experimental conditions employed for the assay ensure a linear response to different doses of 2 NEPs (non-endotoxin pyrogens)

 Moreover, the test aims to verify whether the product to be tested (i.e., the vaccine) interferes with the detection of NEPs

Image: Second systemImage: Second system

Setting of MAT conditions for the TBEV vaccine [VI] - Preparatory Tests -

METHOD VALIDATION FOR NON-ENDOTOXIN MONOCYTE-ACTIVATING CONTAMINANTS

Modified from Etna MP et al. 2020 ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

Setting of MAT conditions for the TBEV vaccine [VI] - Preparatory Tests -

METHOD VALIDATION FOR NON-ENDOTOXIN MONOCYTE-ACTIVATING CONTAMINANTS

Modified from Etna MP et al. 2020 ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

🚯 💿 🎐 🜑 🛛 www.iss.it/malattie-infettive

Determination of LOD, AS, MVD and CLC for MAT optimized for the TBEV vaccine

TLR agonist	LOD	AS		
RSE (EU/ml)	0.040	0.100		
R-848 (µg/ml)	0.050	0.150		
FSL-1 (ng/ml)	0.003	0.009		

DEPARTMENT

INFECTIOUS DISEASES

🚯 💿 🎔 🖸 🛛 www.iss.it/malattie-infettive

MAT setting for the pyrogenicity testing of TBEV vaccine

- Application of a modified version of Method B -

Active substance: TBEV inactivated by formaldehyde ENCEPUR[®] Excipients: Aluminum hydroxide, TRIS buffer, sucrose. Traces of tetracycline, gentamicine, neomycine and formaldehyde.

Cell source: human peripheral blood mononuclear cells (PBMCs) Read-out: IL-6 release

V1, V2, V3: Defined vaccine serial dilution; **E1, E2, E3, E4, E5:** RSE chosen serial dilutions showing a linear correlation.

DEPARTMENT INFECTIOUS DISEASES

Etna et al. 2020 ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

www.iss.it/malattie-infettive

🕜 💿 У 🖸 May 25th, 2023

Research Article

Optimization of the Monocyte Activation Test for Evaluating Pyrogenicity of **Tick-Borne Encephalitis Virus Vaccine**

Marilena P. Etna¹, Elena Giacomini¹, Fabiana Rizzo¹, Martina Severa¹, Daniela Ricci¹, Shahjahan Shaid², Denis Lambrigts², Sara Valentini³, Luisa Galli Stampino³, Liliana Alleri³, Andrea Gaggioli⁴, Christina von Hunolstein⁴, Ingo Spreitzer⁵ and Eliana M. Coccia¹

¹Department of Infectious Diseases, Istituto Superiore di Sanitá, Rome, Italy; ²GSK, Wavre, Belgium; ³GSK Vaccines Srl, Siena, Italy; ⁴National Center for Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy; 5Paul Ehrlich Institute, Federal Agency for Sera and Vaccines, Langen, Germany

ALTEX 37(4), 532-544. doi:10.14573/altex.2002252

www.iss.it/malattie-infettive 0 0 V D