REACHing for solutions: Essential revisions to the EU chemicals regulation to modernise safety assessment
Agenda

Catherine Willett, PhD
- REACH revision context: setting the scene

Marina Pereira, MSc
- How to modernise REACH to achieve the goals of the Chemicals Strategy for Sustainability

Donna Macmillan, PhD
- Accelerating the transition to chemical safety using non-animal approaches

Catherine Willett, PhD
- Concluding remarks

Marina Pereira, MSc & Donna Macmillan, PhD
- Q&A
Setting the scene for REACH revision

Catherine Willett, PhD
REACH
Registration, Evaluation, Authorisation and Restriction of Chemicals
(Regulation (EC) No 1907/2006)

- Registration requires toxicological information on all chemicals above 1 tonne
- Created to better protect human and environmental health through generation of information
- Since 2010, 103,365 dossiers for 23,086 substances*
- Required testing proportional to tonnage listed in annexes
 - Specific methods described
 - "Adaptations" to required testing
- Has become the largest animal testing program in history
- Much of the information generated does not contribute to safety

70% of the substances are yet to be assigned to a regulatory pool (grey) and only 4% of these are currently under consideration for, or have, ongoing risk management measures (red & orange)

*Aug 2022
Chemicals Strategy for Sustainability

- Chemicals Strategy for Sustainability
 - Adopted in 2020
 - Part of the European Green Deal
 - Aims to better protect citizens and the environment from harmful chemicals and boost innovation by promoting the use of safer and more sustainable chemicals
- Promises to cover many new safety concerns
- Is a once in a generation opportunity to assess and improve chemical safety assessment in the EU
- Capitalise on the > billion € the EU has invested in the development of non-animal safety assessment methods

“Safety testing and chemical risk assessment need to innovate in order to reduce dependency on animal testing but also to improve the quality, efficiency and speed of chemical hazard and risk assessments.”
European and internationally-funded NAM research initiatives

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The European Partnership for the Assessment of Risks from Chemicals (PARC)</td>
<td>Working to develop next-generation chemical risk assessment. Budget: €400 million (50% funded by the EU and 50% by Member States).</td>
</tr>
<tr>
<td>ASPIS cluster: A joint collaboration of Horizon 2020-funded projects</td>
<td></td>
</tr>
<tr>
<td>• ONTOX</td>
<td>ONTOX: NAMs to predict systemic repeated dose toxicity effects that, upon combination with tailored exposure assessment, will enable human risk assessment. Budget: €17.2 million.</td>
</tr>
<tr>
<td>• PrecisionTox</td>
<td>PrecisionTox: biomolecular toxicity pathways Budget: €19.3 million.</td>
</tr>
<tr>
<td>• RISK-HUNT3R</td>
<td>RISK-HUNT3R: integrated approaches using human-relevant in vitro and in silico mechanism-based NAMs, chemical exposure, toxicokinetics, and for next-generation risk assessment. Budget: €22.9 million.</td>
</tr>
<tr>
<td>EU-ToxRisk</td>
<td>Integrating advancements in cell biology, -omic technologies, systems biology and computational modelling to define toxicity pathways. Budget: €30 million.</td>
</tr>
<tr>
<td>Accelerating the Pace of Chemical Risk Assessment (APCRA)</td>
<td>An intergovernmental collaboration and dialogue on the scientific and regulatory needs for the application and acceptance of NAMs in regulatory decision making.</td>
</tr>
<tr>
<td>The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21)</td>
<td>A problem formulation-based approach created to harmonise how the world evaluates chemicals and provide a flexible and transparent framework for efficient risk assessment.</td>
</tr>
</tbody>
</table>
Animal protective language in REACH

EC 1907/2006

- Article 1 Aim and scope
 - “The purpose of this Regulation is to ensure a high level of protection of human health and the environment, including the promotion of alternative methods for assessment of hazards of substances, as well as the free circulation of substances on the internal market while enhancing competitiveness and innovation...”

- Article... And yet... despite the investments, despite the intention, the adoption of non-animal assessment tools is lagging and nearly negligible under REACH

- Article 25 Objectives and general rules
 - “In order to avoid animal testing, testing on vertebrate animals for the purposes of this Regulation shall be undertaken only as a last resort.”
Barriers (and solutions) to NAM implementation in REACH

Barriers
- Tick-box approach in Annexes
- Nature of compliance review
- Focus on hazard vs risk
- Reliance on, and addition of new animal tests
- Expectation that NAMs mimic the required animal endpoints

Solutions at multiple levels
- Procedural changes
- Technical changes via Comitology
- More comprehensive structural changes in REACH
Lessons from experience

- Other jurisdictions have:
 - High-level commitments to move away from animal testing by 2035
 - Information needs described in terms that do not refer to specific methods – ‘method-agnostic’
 - NAM-based screening and prioritisation processes

- The EU has invested €€€€ and has the potential to be the global leader in the science of NAM-based testing
Now is the time to reassess, re-envision REACH

- REACH revision proposal from the European Commission (EC) expected in Q1 2023
- New thinking is needed - it is only through accelerated, science-supported adoption of NAMs that the goals of REACH and the aspirations of the CSS can be achieved in our lifetime
- The proposals we highlight today offer a path towards the promising future intended by the CSS

CSS: “reduce dependency on animal testing”

EC: an increase in animal testing is “unavoidable” if the EU is to fulfil its ambitions under the CSS
How to modernise REACH to achieve the goals of the Chemicals Strategy for Sustainability

Marina Pereira, MSc
Senior Strategist – Regulatory Policy
Research & Toxicology Department
13 October 2022
Humane Society International’s proposals to modernise REACH

Propose 3 levels of change, aiming for faster and better delivery of protection goals whilst minimising animal testing:

Procedural changes
- Implement an improved approach to grouping and read-across
- Create an expert scientific committee on application of NAMs for chemical safety assessment
- Improve reporting obligations and establish reviews

Technical changes via delegated acts
- Consider redundancy of existing information requirements
- Increase the use and regulatory acceptance of NAMs
- Require testing proposals for all annex levels
- No new/expanded animal testing standard information requirements

More comprehensive structural changes
- Reinforce language around animal testing as a “last resort” and promotion of NAMs
- Optimise the Dossier Review and Substance Evaluation process under REACH
- Implement a NAM-based tiered, optimised testing strategy
- Implement NAM-based risk management for chemicals under REACH
Reinforce the promotion of alternatives and last resort requirement in REACH

- **Problem**: provisions in REACH are insufficient to promote NAMs and decrease animal testing

- **Solution**: introduce **stronger provisions under REACH**:
 - Stronger language to promote animal welfare:
 - Article 1 (promotion of alternatives + ultimate goal of phasing out animal testing);
 - Article 13 (NAMs as the starting point to safety assessment as opposed to providing same level of information as animal tests);
 - Article 25 (‘last resort’ requirement augmented with animal testing performed if necessary for improved risk assessment/measures).
 - Create an expert scientific committee on application of NAMs for chemical safety assessment within ECHA (e.g. develop a replacement strategy/roadmap, provide independent advice/recommendations on NAMs to registrants, review of current practices)
 - Improve reporting obligations (by the Member States, ECHA and the Commission) and establish a new yearly review on the use and uptake of NAMs under REACH in light of ongoing technical progress

→ **Mandate on the promotion of alternatives to animal testing reinforced to achieve tangible results**
Optimise dossier review and substance evaluation processes under REACH

Problem:

- Regulatory needs for ~70% of REACH-registered substances are still to be assigned (source: ECHA’s map of the chemical universe)
- Dossier Evaluation (compliance check is a laborious ‘tick-box’ exercise for dossier completeness regardless of the utility of studies) + Substance Evaluation (only conducted in certain cases, testing is done only if it would potentially lead to an improvement of the risk management measures)

Solution: Optimise and merge the Dossier Evaluation and Substance Evaluation processes to expedite the risk management process under REACH

→ This approach would not only lead to a reduction in animal testing but would also help to speed up the review of substances
No new/expanded animal testing standard information requirements

- **Problem:** Goal of the CSS is that “Safety testing and chemical risk assessment need to innovate in order to reduce dependency on animal testing but also to improve the quality, efficiency and speed of chemical hazard and risk assessments”, however current proposals will increase dependency and toll on animals.

- **Solution:** All new standard information requirements should be NAM-based
 - Additional actions:
 - Remove redundancy of existing information requirements (e.g. PNDT in a second species)
 - Require testing proposals for vertebrate testing at all annex levels (to ensure compliance with the ‘last resort’ requirement and encourage non-animal assessments)

→ Future-proof REACH and invert the trend of animal testing dependency, ensuring that it can **evolve with the pace of progress in science and risk assessment**
Introduce a process to efficiently identify high-risk substances for regulation

- **Problem:** as stated in the CSS, EU chemicals policy must evolve and respond more rapidly and effectively to the challenges posed by hazardous chemicals

- **Solution:** Introduce a *tiered, optimised testing strategy* that evaluates hazards in a step-wise manner, with an optimised testing strategy that prioritises the identification of SVHCs and the concerns that would lead to the most stringent risk management measures

 → More streamlined and effective approach to the identification of substances of the *most concern* for human health and the environment, whilst minimising the need for animal testing
Implement NAM-based risk management for chemicals under REACH

Problem: all standard information requirements need to be met, with redundant and avoidable animal studies. Performing time- and animal-intensive tests when not relevant is inefficient and delays the decision-making process and regulatory action

Solution: apply a NAM-based risk management approach*

- First identify the use and exposure profile of a substance
- Use high-throughput NAM data with toxicokinetic modelling to generate NAM-based points of departure (POD\textsubscript{NAM}) for specific uses
- POD\textsubscript{NAM} is then plotted against the exposure scenarios
- The Bioactivity to Exposure Ratio (BER) is then determined by comparing POD\textsubscript{NAM} to the exposure
 - Each use can be assessed using the matrix to determine whether the substance can be used safely, and risk management measures needed

→ This approach would not only lead to a **reduction in animal testing** but would also ensure that **risks are addressed as early in the process as possible to ensure protection**

* (c.f. APCRA, Health Canada, ECETOC publications)
Use and regulatory acceptance of NAMs

- **Problem:** despite major advances in non-animal methods, their regulatory acceptance remains slow under REACH due to:
 - A higher burden of proof is required for NAMs than for animal tests e.g. a negative *in vivo* test is considered to be reliable, but a negative *in vitro* test often will result in suspicion that a positive has been ‘missed’
 - The expectation is that a NAM will provide identical information to that obtained from animal tests, in a 1:1 replacement - instead of a NAM, or several NAMs, providing information that addresses the same safety concern

- **Solution:**
 - Describe regulatory concerns and information needs in method-agnostic* language
 - Allow the use of NAMs within the context of Integrated Approaches to Testing and Assessment (IATA)

→ This would facilitate the use and regulatory acceptance of NAMs and speed up a transition to non-animal, innovative science

method-agnostic: where specific studies are not mentioned or required – but the information need is described (e.g. concern for effects on reproduction), and any appropriate method can be used to satisfy information requirements
Accelerating the transition to chemical safety using non-animal approaches

Donna Macmillan, PhD
Senior Strategist – Regulatory Science
Research & Toxicology Department
13 October 2022
A NAM-based tiered, optimised testing strategy

- The tiered, optimised testing strategy proposed by HSI is based on NAMs
- For each endpoint, there are NAMs at different stages:
 - Available
 - In routine use and accepted by regulators
 - In use but rarely accepted
 - In progress/development

![Diagram showing the tiered, optimised testing strategy](image-url)
NAMs for acute oral toxicity

- **Acute oral toxicity**
 - **Available: CATMoS**
 - NICEATM collated acute oral toxicity data and invited the development of models from many international collaborators
 - The Collaborative Acute Toxicity Modeling Suite (CATMoS) was created - a consensus (Q)SAR model based on a weight of evidence
 - Has high accuracy against *in vivo* data

![Figure 4](image-url). The columns represent the different bins from the EPA and GHS categories combined. The rows represent the five different end points and the WoE prediction. The arrows in each row represent the range of the prediction for each end point which were attributed a value of 1 and outside of it a value of 0. The winning bin is determined by the maximum of the sum of each column in the WoE row.
NAMs for acute oral toxicity

- **Acute oral toxicity**
 - **Available:** The 3T3 Neutral Red Uptake Cytotoxicity assay
 - Shows correlation between *in vitro* IC50 and rat LD50
 - **In progress:** a human cell-based test for acute oral toxicity from XCellR8
 - Currently being validated
 - Showing promising predictivity against GHS classes
 - Possibly available in early 2023
NAMs for skin sensitisation

- Skin sensitisation
 - **Available:** Many *in vitro* assays
 - OECD TG 442C/442D/442E
 - **Available:** Defined Approaches for Skin Sensitisation - OECD TG 497
 - Combines several information sources including *in vitro* and *in silico*
 - Predicts human sensitisation as well or better than the *in vivo* local lymph node assay
 - **Available:** Other assays
 - EpiSensA
 - PPRA
 - SENS-IS
 - **Available:** (Q)SARs
 - CAESAR
 - Derek Nexus
 - OECD Toolbox
 - PredSkin
 - Toxtree

Test Guideline No. 442C
In Chemico Skin Sensitisation
Assays addressing the Adverse Outcome Pathway key event on covalent binding to proteins

Test Guideline No. 442D
In Vitro Skin Sensitisation
ARE-Nrf2 Luciferase Test Method

Test Guideline No. 442E
In Vitro Skin Sensitisation
In Vitro Skin Sensitisation assays addressing the Key Event on activation of dendritic cells on the Adverse Outcome Pathway for Skin Sensitisation
NAMs for skin corrosion and skin irritation

- Skin corrosion and skin irritation
 - **Available:** Many *in vitro* assays
 - OECD TG 430: *In vitro* skin corrosion: transcutaneous electrical resistance test method (TER)
 - OECD TG 431: *In vitro* skin corrosion: reconstructed human epidermis (RHE) test method
 - OECD TG 439: *In vitro* skin irritation: reconstructed human epidermis test method
 - OECD TG 435: *In vitro* membrane barrier test method for skin corrosion
 - **Available:** (Q)SARs
 - HazardExpert
 - Derek Nexus
 - MultiCase
 - OECD Toolbox
 - TOPKAT
 - Local models and/or literature-based (Q)SARs
NAMs for serious eye damage and eye irritation

- Serious eye damage and eye irritation
 - **Available:** Several *in vitro* assays
 - OECD TG 491: Short time exposure *in vitro* test method
 - OECD TG 492: Reconstructed human Cornea-like Epithelium (RhCE) test method
 - OECD TG 494: Vitrigel-eye irritancy test method
 - **Available:** Defined Approaches for Eye Irritation - OECD TG 467
 - Combines several information sources including physicochemical parameters and OECD TG methods
 - High predictivity of serious eye damage and eye irritation against *in vivo* Draize test data
 - **Available:** (Q)SARs
 - HazardExpert
 - Derek Nexus
 - MultiCase
 - OECD Toolbox
 - TOPKAT
 - Local models and/or literature-based (Q)SARs

Damage and Eye Irritation
NAMs for acute aquatic toxicity

- **Aquatic toxicity (acute)**
 - **Available: In vitro assays**
 - OECD TG 249: Fish Cell Line Acute Toxicity - The RTgill-W1 cell line assay
 - **Available: (Q)SARs**
 - ECOSAR
 - OECD Toolbox
 - VEGA

- **In progress: SAFE - a CRACK-IT sponsored challenge**
 - Develop a suite of innovative, scalable bioassays for key AOPs to replace in vivo fish studies in chemical safety screening and regulatory environmental risk assessment
NAMs for persistence, bioaccumulation & mobility

- Persistence
 - Available: *In silico* predictions of environmental fate and physicochemical properties
 - EPISUITE
 - OECD Toolbox

- Mobility
 - Available: *In silico* predictions of environmental fate and physicochemical properties
 - EPISUITE
 - OECD Toolbox

- Bioaccumulation
 - Available: *In silico* predictions of bio-concentration factor (BCF)
 - CAESAR
 - EPISUITE
 - MultiCase
 - OECD Toolbox
 - VEGA

![Image of bioaccumulation tool interface]
NAMs for genotoxicity

- Mutagenicity & carcinogenicity
 - **Available:** *In vitro* assays
 - OECD TG 471: *In vitro* mutation test (Ames)
 - OECD TG 473: *In vitro* chromosome aberration test
 - OECD TG 476: *In vitro* mutation tests using the Hprt and xprt genes
 - OECD TG 487: *In vitro* micronucleus test
 - ToxTracker – *In vitro* stem cell-based reporter assay
 - **Available:** (Q)SARs
 - CAESAR
 - Derek Nexus
 - Leadscope Genetox Expert Alerts
 - Leadscope Model Applier
 - MultiCase
 - OECD Toolbox
 - Sarah Nexus
NAMs for complex endpoints

- Complex endpoints, including systemic endpoints:
 - Developmental & reprotoxicity / DNT
 - Non-genotoxic carcinogenicity
 - Aquatic toxicity (chronic)
 - Specific target organ toxicity
 - Endocrine disruption
 - Immunotoxicity
 - Respiratory sensitisation

- NAMs for these (aptly named) complex endpoints are generally less-well developed than other endpoints but there are still many projects and initiatives undertaking this challenge
NAMs for complex endpoints

- Developmental & reprotoxicity
 - Available: *In vitro* assay
 - ReproTracker - stem-cell based biomarker assay
 - Available: (Q)SAR
 - CAESAR
 - In progress:
 - *In vitro* test battery - medium- to high-throughput *in vitro* assays
 - Bioactivity predictions - high-throughput *in vitro* assays

- Non-genotoxic carcinogenicity
 - Available: *In vitro* assay
 - ToxTracker - *In vitro* stem cell-based reporter assay
 - In progress: An OECD-supported integrated approach to testing and assessment (IATA) based on adverse outcome pathways (AOPs)

Concept Article

International Regulatory Needs for Development of an IATA for Non-Genotoxic Carcinogenic Chemical Substances

Märina N. Jacobs¹, Annamaria Colacci², Kimmo Luohakari³, Mirjam Luijten⁴, Betty C. Hakkert⁵, Martin Poparelli⁶ and Paule Posser⁷

¹Department of Toxicology, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, UK; ²Center for Environmental Toxicology and Risk Assessment, Environmental Protection and Health Prevention Agency, Emilia Romagna Region, Italy; ³European Chemicals Agency, Helsinki, Finland; ⁴Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bôbthoven, The Netherlands; ⁵Bureau REACH, Department for Industrial Chemicals, Center for Safety of Substances and Products (VSP); National Institute for Public Health and the Environment (RIVM), Bôbthoven, The Netherlands; ⁶Chemicals & Biocides, Environment Agency Austria, Vienna, Austria; ⁷CNRS UMR 7360, University of Lorraine, Metz, France
NAMs - summary

- Not all NAMs are likely to be used as a 1:1 replacement for *in vivo* tests
- BUT there are many human-relevant NAMs at our disposal that can be used alone, in defined approaches, IATA, test batteries or in a weight of evidence to provide the information required to meet regulatory requirements
References (1)

References (2)

OECD, 2016c. Test No. 487: In Vitro Mammalian Cell Micronucleus Test.

OECD, 2019b. Test No. 492: Reconstructed human Cornea-like Epithelium (RhCE) test method for identifying chemicals not requiring classification and labelling for eye irritation or serious eye damage.

OECD, 2021b. QSAR Toolbox v4.5. (https://qsartoolbox.org/).

References (3)

Concluding remarks

Catherine Willett, PhD
European calls for an end to animal testing

- European Parliamentary Resolution
 - Majority of 667 to 4
 - “...EU-wide action plan with the aim of driving the active phase-out by reducing, refining and replacing procedures on live animals for scientific and regulatory purposes.”

- European Citizens Initiative to end animal testing
 - >1.4 million signatures
 - To protect and strengthen the cosmetics animal testing ban
 - To transform EU Chemicals Regulations (no new animal testing)
 - Modernise science in the EU: commit to a roadmap to phase-out all animal testing in the EU before the end of the current legislative term
Animal-free chemical safety assessment

- Overwhelming parliamentary support
 - Broad public support
 - Scientific and regulatory progress
 - Enormous investments in non animal safety science

Ø Procedural and structural roadblocks under REACH
The time is now

- To revise REACH to improve efficiency and chemical coverage
 - New approaches are needed to adopt NAMs at a faster pace
 - Procedural modifications
 - Annex and technical modifications
 - Farther reaching structural changes

→ The aspirations of REACH and the CSS can be achieved in our lifetime
Thank you!

For follow up contact: dmacmillan@hsi.org