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The Animal-Free Safety Assessment Collaboration

The HSI-coordinated Animal-Free Safety Assessment (AFSA) Collaboration works to
accelerate global adoption of a modern, species-relevant approach to safety
assessment that will better protect people and our planet, and hasten the replacement
of animal testing
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AFSA Cosmetics E&T

A Global Training Program in Non-Animal Risk Assessment

e Safety assessment of cosmetics and cosmetic
ingredients without new animal data

e Covers all aspects of the process
o Consumer exposure, external and internal
o Acute local effects to systemic repeat effects

o Information integration to make a risk decision

e Focus on understanding the information generated from the tools
and how to use this information vs. how to perform or build the
individual methods



AFSA Cosmetics E&T

A Global Training Program in Non-Animal Risk Assessment

® Address the needs of regulatory &
regulated communities as well as
other stakeholders involved in risk
assessment of products

* Support regional capacity-building to
achieve long-term acceptance &
implementation of non-animal
approaches to safety assessment




Risk Assessment Process
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AFSA Cosmetics E&T

Covering Risk Assessment from start to finish

Risk Assessment Process
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Next Generation Risk Assessment (NGRA) Framework
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Next Generation Risk Assessment (NGRA) Framework
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Overall Learning Objectives

Product Developers and evaluators

By the end of this webinar, you will be able to:

1. Describe the role of biokinetics in risk assessment
Outline four components of dosimetry (ADME)
List the applications of PBK modeling

2.

3

4. List the types of compartments in PBK models
5. Outline the differences between IVIVE and PBK
6

Identify the applications of IVIVE

g

AFSA
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Introduction: Exposure and dosimetry in context
of risk assessment

Why is dosimetry important?

* External exposure tells us the amount of a chemical that an individual
may encounter but doesn’t necessarily dictate the toxic response.

* Determining the internal exposure (i.e., the amount of the active form
of the chemical that reaches the target tissue) provides a much more
accurate prediction of the toxic response.

How do we predict target tissue dose?

* Target tissue dose can be predicted using the principals of biokinetics,
the quantitative evaluation of the chemical kinetic processes that
determine chemical uptake, distribution and excretion from the body.

* The goal of biokinetics is to develop internal dose metrics to help
predict tissue toxic response.
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Source to outcome continuum

Exposure

NOTE: Ext | . . . . o
equswéfé??red\ absorption) distribution; metabolism
detail in Module 2

Tissue Dose
emical actions; receptor binding

Molecular Interactions

\ receptor activation; tissue reactivity

Early Cellular Interactions
functional changes: i.e., enhanced
contractility, hepatic failure

Toxic Responses cancer; tissue disease;
reproductive - neurologic effects (,<

AFSA
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Exposure

Defined as the measurement of both the amount of, and the frequency with which, a
substance comes into contact with a person or the environment.

Routes of exposure: Other less common routes of human

chemical exposure (usually associated with

Skin (transdermal  Oral/Gl tract Lung pharmaceuticals, or animal studies)
absorption) (ingestion) (inhalation)

® Intravenous
(injection/infusion into veins)

e Intramuscular
(injection in muscle tissue)

e Subcutaneous
(injection in subcutaneous fat)

e Intraperitoneal
(injection into intraperitoneal cavity)




Use considerations: Routes of Exposure

Skin Inhalation* Ingestion
e Skin creams * Aerosols L * Toothpaste
* Deodorants == * Pump sprays ‘; * Lipsticks

* Soap/cleansers @7 yh.  * General purpose * Dishwashing
»  Shampoo/ !: } cI.eanser (GPO) "‘ residues
conditioner \ trigger sprays

e Shower gel % =i \
(e ST

* Hand/dishwashing
cleaners

* Generally dependent on
delivery system rather
than product type.

A Ty It 1

e, —
N
iy

e




Biokinetics
The transport and metabolism of chemicals in a biological system

Biokinetics Biodynamics Tissue Concentrat|or1:
the amount of chemical

(in active form) that

Exposure Concertation in Critical Effect reaches the target
biologi'cal unit tissue.

P .. : Point of Departure:

% “5"2\ the dose required for a

AN particular tissue to

have an effect
* Inhalation ')
¢ r an [ . . . .

e Oral . Tisgsue Cancer The goal of biokinetics is
e Dermal . Cells * Other to determine the tissue
e Intravenous Toxicity dose associated with the

* Macromolecules point of departure.




BIOKINETICS

Defining the basics




The four components of dosimetry

Dosimetry (chemical disposition; biokinetics):
Internal dosimetry (chemical concentration in the blood and tissues)
is determined by the disposition of the chemical (or distribution of
the chemical throughout the body).

® There are 4 main processes that determine

chemical disposition and internal dosimetry: ELIMINATION DISTRIBUTION

1. Absorption

2. Distribution ADM

3. Metabolism

4. Elimination METABOLISM
* Together, these 4 processes are often abbreviated as ADME.

* Chemical disposition (aka biokinetics) is a product of the
composite actions of a chemical’s ADME.




Components of Dosimetry: Absorption

Absorption: The uptake of chemicals into the body.

* Can occur through passive or active biochemical processes
* Sites of absorption: Gl tract, lung, skin, plasma membrane (iv)

BIOAVAILABILITY
Describes how well the chemical is absorbed: the fraction
of administered dose that enters systemic circulation

* Limitations in absorption through skin, Gl or lung barriers
can reduce bioavailability

By definition, an intravenously administered dose is 100%
bioavailable (s
' gAFSA
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Absorption: Dermal Exposure
' FACTORS INFLUENCING SKIN BIOAVAILABILITY
* Assumption of 100% skin
penetration in the Solubility
absence of data '

Evaporation

Stratum Corneum

* May be reduced by:

Epidermis
v" washing/wiping of —
skin
v evaporation off of
skin Fat

v" metabolism in
keratinocytes

v distribution in skin Skin bioavailability is a function of all these factors over time




Methods to help address skin bioavailability

Solubility Evaporation Absorption

OECD TG 428

OECD TG 105
1C-TC
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Svock wabh\Ll
DMSO
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Q‘,‘,‘,’:,“"/‘L ]J r ‘ Mo Closed Open
.,.;'.:;,o. l4h atRT

Recovery = uCiin openvial _ x 100
pCiin closed vial

Distribution Reactivity
OECD TG 442c
sC Whole
£ ble Epiderm = :ijerm pidermis 3
13 Dermis (60C, 40-50s) | . ..
g 2 TSk o Peptide reactivity
assays
Delipidiza Epidermisi
) (C CI3/Me! 0 ) : X
e \
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Components of Dosimetry: Distribution

Distribution: The uptake of chemicals into the body.

* May be passive diffusion or active transport between blood & tissues

Passive diffusion Active transport

°, ° o é @ @
e ® o ©)
?
Chemical gradient-driven Requires energy to move chemical

against gradient

g
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Distribution: Determinants of chemical distribution

CHEMICAL DETERMINANTS PHYSIOLOGICAL DETERMINANTS

* Log P (lipophilicity) - e.g., * Body weight
chemicals with positive log P are Y |
lipophilic Tissue volume

® Fraction of chemical bound to * Blood flow to tissues

plasma proteins
® Binding to transporters in tissues




Distribution: Plasma Protein Binding

Fraction unbound:
fraction total blood chemical
NOT bound to serum proteins

Reversible Binding of a Compound to Albumin

Bound Free

/ci)mpound \.cgmpound f . [Free]
“= TTotal]

Retention of Protein-Bound Compound within [Total] = concentration of total chemical in blood,
the Vasculature including both bound and unbound (free) chemical
| Free] = free concentration in blood

fu = fraction unbound, which can range from 0 to 1
(or 0-100%)




Components of Dosimetry: Metabolism

Metabolism: Enzyme mediated transformation of the chemical, in general metabolism
alters its physicochemical properties to promote excretion from the body

® Sites of chemical metabolism:

—~ Primarily in the liver, but also in kidney,
skin, lung, brown fat and other tissues
where specific enzymes are expressed
support tissue health and function.

* Effect on chemical toxicity:
— Generally promotes clearance
- Bioactivation
- Inactivation




Liver Metabolism: In vitro models

Subcellular 3-D cell
fraction culture
v’ Easy to use v Easy to use v In vivo-like physiology v In vivo-like architecture
v Amenable to HT v Amenable to HT v In vivo-like expression of v In vivo-like enzyme &
v Low cost v Commonly used enzymes transporter eXpreSSion
v Phase I /1l enzymes v Multiple species v Concurrent toxicity evaluation
v’ Clearance, inhibition, binding v Pooled hepatocytes v’ Long term culture
v Pool donors * Functional decline <24 hr
L o ) ) ) = Complicated to use
Difficult in vivo extrapolation Functlon.al d.ecllne.-v 4.hr =  Low - medium throughput = Tissue availability
= Lack of fidelity to in vivo = Can be difficult to image = Low throughput
structure . )
" Expensive = Expensive

= Difficult in vivo
extrapolation

Predictability, complexity, cost

Ease of handling, reproducibility, throughput




Components of Dosimetry: Elimination (aka Excretion)

Excretion: Elimination of the chemical from the body

Major Excretion Pathways: €D Other Excretion Pathways
* Renal excretion (kidney * Hair
i ® Menstruation
urine)
® Lactation

®* Fecal excretion (GlI, feces,
includes contribution
from liver via bile), l

®* Sweat, etc.

* Lung (blood, exhaled air)




Elimination: Urinary excretion - incorporation in models

Irreversible transfer of a chemical or its metabolites from plasma into urine
No in vitro methods available
Active and passive transport can lead to reabsorption

If renal excretion is predicted to be the dominant route of excretion, it can be
calculated as follows:

Renal Glomerular Fraction .
= X g X Concentration

clearance ~— filtration rate unboun




Recap: Biokinetics oo

\ absorption, dist§bution; metabolism

* Biokinetics is the study of the metabolism and

Tissue Dose
chemifal actions; receptor binding
transport of drugs (pharmacokinetics)
or chemicals (toxicokinetics) through the

receptor activation; tissue reactivity
body.

Early Cellular Interactions

* Despite protective barriers such as skin, there functional changes: ie, enhanced
. . contractility, hepatic failure
are multiple routes of entry for chemicals, \
including the Gl tract and the lungs. OUEHESPONSES  cancer, isue disease;

effects

* Once the chemical enters the body, the
processes of absorption, distribution,

metabolism, and elimination dictate the The internal concentration at the organ,
’ tissue, cells and macromolecular levels

distribution of a chemlcrcll. Meas.urlng these can have toxic effects. PBK modelling can
processes helps determine the internal dose of be used to describe the quantitative

a chemical. relationship between external dose and
internal dose.




Biokinetic
Modeling




Compartmental models

* Compartmental modelling attempts to describe organs or systems of the body as simple

volumetric compartments.

* Compartmental models use the principles described in the previous slides to define a
volume of distribution for a drug. (i.e., how extensively the drug is distributed in the

body).

Since C = AV, thenV =A/C

Example of a 1 Compartment Volume of C = ng/(ng/mL) -> mL
Distribution Model

* A=amount dosed (ng)

* C=concentration of chemical in the
compartment (e.g., blood) (ng/mL)

* V=volume of compartment (ng/mL)

* Assume: bolus dose, i.e., instantly available

Large V: chemical is
distributed widely

Likely distributed with body
water

However, this example
doesn’t account for:

(1) absorption

(2) transport into tissues
(3) clearance

Body is ~ 75% water

¢ Small V: chemical is poorly
distributed

¢ Likely bound to proteins in the
blood (if absorbed)

More complex
compartmental models
combine these processes
to describe chemical
kinetics in the blood.




Building a classical compartmental PK model

® The rate equations
. c
described here can be S = 5
. . © =]
combined to describe £ ) ; E
. . 21 12
chemical movement in £ x 8
Of X A1 S
the bOdy -g X Xx « KO kout %
. L] X
® This can be used to m X 3 1
develop an empirical time time
description of drug
kinetics |e A1 = amount of drug in compartment 1 K12 = first order rate from compartment 1
? ,’ . A2 = amount of drug in compartment 2 to compartment 2 (eg, blood -> tissues)
pharmaCOkl netics K21 = first order rate from compartment 2

KO = zero order rate of dosing .
_ o to compartment 1 (e.g., tissues -> blood)
Kout = first order rate of elimination (i.e.,

. Rates are fitted to measured time course data.
urine)




Benefits and limitations to compartmental models

®* Simple to create

® Many existing software
options

¢ Allows calculation of
informative parameters

o AUC = area under the curve =
average concentration

o Cmax = max concentration

o Tmax = time at which drug
reaches Cmax

o t/2 = half-life

o calculate time to steady state
(esp. for slowly cleared
chemicals)

Cannot extrapolate
outside experimental
conditions

E.g., different animals,

doses, dose routes, etc.

Can only describe data,
does not predict
behavior

Concentration

Concentration

absorption

clearance

Non-iv dose
(po, sc, etc)

AFSA
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PBK models
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100 -
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Many names for a common process T
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PBK model course content overview

* Why use PBK models?
* Building a PBK model
— Defining structure
-~ Parameterization
* Validation
—~ Comparison to data
-~ Sensitivity and uncertainty analysis
* Applications of PBK
-~ Extrapolation
= Species, route of exposure, life stage, acute -> chronic exposures
— Target tissue dosimetry
- Interpretation of Biomonitoring
- Invitro to in vivo extrapolation (IVIVE)




Why PBK models?

* Extrapolation (predicting beyond the experimental conditions) rather than interpolation (describing
kinetics within the experimental conditions) as in classical PK

- Route
—> Species
—~ Life stage, gender, etc.
-~ Single to repeated dose
—~ Chemical
* Pharmacokinetic modelling is a valuable tool for evaluating tissue dose under various exposure
conditions in different animal species.

® To develop a full picture of the biological responses caused by exposure to toxic chemicals, it is
necessary to analyze the processes that will determine your tissue dose and the interactions of
chemical with tissues.

* Physiological modelling approaches are used to uncover the biological determinants of chemical

disposition .




Problem
Identification

PBK modelling process: Iterative development

Literature
| Evaluation |
Mechanisms | Physiological
of Toxicity Biochemical Constants
Constants
A 4
Model
Formulation
= Simulation
Refine Compare to Validate
Model Kinetic Data Model
A 4
Design/Conduct Extrapolation

Critical Experiments

to Humans

Clewell, R. A, and Clewell H. J. (2008). Regul. Toxicol. Pharmacol.
50(1), 129-143. PMID: 18077066.

AFSA
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Occam’s Razor

“Entities should not be multiplied OR ‘The simplest explanation is usually the
without necessity” right one’

Modelling is inherently a balance between including

necessary detail and keeping the m | tr le.
y d keeping the model tractable “All models are wrong,

Ask yourself:
y and some are useful.”

1. Is this biologically plausible?

2. s it necessary to describe the chemical kinetics?
3. Is there sufficient data to parameterize it?

4. Can | test or validate the parameters/description?
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Modeling philosophy: Lumping vs. splitting

Lumping Splitting

Body
Body / Liver

Rapid / Slow / Liver
Rapid / Slow / Liver / Fat
Only a Few Tissues Grouped

All Tissues and Organs Separate

g

AFSA
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PBK model: Tissue grouping

Tissue Grouping Criteria
 perfusion rate = blood flow / volume
time constant (R): units = hr'
- R=Q/V
*  “rapidly” perfused tissues
* E.g, gut, liver, kidney, etc.
> “slowly” perfused tissues

* E.g.,, muscle, skin, fat

Model purpose
* Target tissue

* Description of a particular process

* Metabolism

e Enterohepatic recirculation
* Protein binding

e Active transport, etc.

* Important for ADME

Should be fit for purpose!

g

AFSA

COLLABORATION




PBK model: Compartments

® Storage
- Fat, RBCs,...

® Excretion

- Urine, feces, milk, hair, ...

* Flow-limited metabolism |
- Liver, kidney, skin,... . TR Kidney

Venous
blood

* Uptake routes (e.g., skin)
-~ Skin, Gl, blood, lungs....

® Target Tissues
- Any

Spleen

Distributional kinetics
- Any




PBK model: Deciding which tissues to include

* Target Tissues * Total radioactivity data

v metabolism v’ Represents sum of parent and

v' binding metabolite concentrations

v" Pharmacodynamics v’ May require “other metabolites”
* Metabolite Compartments compartment

v’ compartmental description * Tracer data

v" physiologically based description v" If kinetics are dose-dependent,

need to model both unlabeled
and labeled material

v" Similar problem for endogenous
compounds

* Experimental Apparatus
v' chamber
v’ sampling device

* Experimental problems
v Loss of material
v' Preening

* Multiple chemical interactions
v' Competition
v" Inhibition/induction




PBK model: Description of a single tissue

Q; = tissue blood flow

Qr Qr
c Ar C C, = arterial blood concentration
A VT :
C, = venous blood concentration
P, = tissue partition coefficient
Mass balance equation: dA;=A"=Q;*C, - Q;* Cyr V; = tissue volume
dt A; = amount of chemical in tissue
A= [A dt
Cr=A; /VT
Cr=Cyr / P;




PBK model: Parameters

PHYSIOLOGICAL PARAMETERS

A 4

CHEMICAL-SPECIFIC PARAMETERS

A\ 4

|
|
|
|
|
|
|
. |
* Body weight | Physicochemical Distribution
e Cardiac output i * Molecular formula * Fraction unbound in
S & o | | * CAS no. plasma (FuP)
I TERTE Gl | * Molecular weight * Ratio Blood to Plasma
* Blood flow rate | * LogP (Rbp)
| ) ) 1 1 1
® Vascular space of each organ | . EK? bili Volume of distribution
.« Ti » | 9 lerl gy Metabolism and Excretion
15sU€ composition i Absorption * Hepatic Clearance rate
| * Skin absorption rate (CL)
Data for these can be found in references given | * Evaporation rate/ * Vmaxand Km
|

in the resources section vapor pressure




PBK Model: Validation

Validation includes:

® evaluation of the fit to data,

* predictive capability for validation data (data not used for model building)
* appropriateness of model structure

* appropriateness of model parameters

® parameter sensitivity vs. parameter uncertainty

Applicability
Domain

Uncertainty Variability Validation Reporting

For more: see AFSA E&T Module 3 and OECD (2021), Guidance document on the characterisation, validation and reporting of Physiologically
Based Kinetic (PBK) models for regulatory purposes, OECD Series on Testing and Assessment, No. 331, Environment, Health and Safety,

Environment Directorate, OECD.
g}
gAFSA
e COLLABORATION




PBK model validation: Sensitivity analysis

Sensitivity analysis for PBK model for ethanol in the adult rat

Adult Model
2 00
1.65

1.50 -
» 1.05
s 1.00 4
(7]
=
g 0.50 0.32
L
>
> 0.00 .
§ [
3 -0.50 -0.37

-1.00 1 .0.01

1.50

& v O O O O <
o « F & & ¢ &
& 3
Parameter

1% change in parameter
vs. change in blood
ethanol concentration

Martin SA et al. 2012. Inhal Toxicol.
24(1 1):698-722.




PBK model application: Life-stage extrapolations

Pregnancy

GHRE iR

PBPK Model

Bodyweight

..:? compromised organ function
) /".:-:.' |
" \
| VA D ‘V’ *0
¢ %
Ay J 1
"\;‘ }"' y .'
!

! \
CSTURNEE TR
A el
855 Index
Photo sources: https/fwww sstockphoso.com/ & Mips //www shutterstoce comy/
\AFSA
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PBK Model Applications: Account for Disease States

* Example: Renal Impairment
Step 1: Develop and qualify PBK model for

each drug in health subjects

Step 2: Predict PK for each drug in various
renal impairment populations

STAGE1 STAGE2 STAGE3A STAGE 3B STAGE4 STAGES

Step 3: Calculate AUC ration (AUCR)
between renal impairment and healthy
subjects based on PBK and static models

Step 4: Compare model (PBK/static)-
predicted AUCR with observed values in
renal impairment studies across all drugs

Yee KL et al. (2019) https://www.dneph.com/chronic-kidney-disease/stages-of-ckd/




PBK Model Applications: Aggregate exposure

* Example - Phenoxyethanol

Multi-route PBPK model
H Mol | PhE Submodsl A Submdsl
Metabolism Pathway R arent imetaboke)
o = R
D"“""““OH D"‘-’JL‘DH _* 1 Adpoe  w—t —{ Adpow e
@ Akohal and akdehyce '_g
Phencxyethanal (PhE) dehydrogenaes Phencxyacetic acd (Phas) - — ¥
ity o w il Urine
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Traditional vs. NAM-based toxicology

TRADITIONAL TOXICOLOGY 21°T CENTURY TOXICOLOGY

¢ Test in animals --> predict in humans -

¢ Translate animal Dose-Response to human -
exposure

* PBPK models predict human dosimetry .
from animal data and comparative
physiology/biochemistry

0.25 -

—[Parent]@hilood
0.20 | —[Metabolite]inRarget
—[Metabolite]indblood
0.15 -
=
[=
0.10 -

0.05 -

0.00

Test human in vitro --> predict in vivo
Translate dose in cell culture medium to
human exposure

Modified PBPK models (aka IV-IVE)
predict human dosimetry from
physicochemical properties, in vitro
kinetics and human physiology

= = [Parent] in media (metabolism,
12 evaporation etc.)
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In vitro kinetics: Overview

* Cell culture are dynamic systems
with many kinetic processes

® The sum of these process zﬂhiiges
determines free chemical
concentration and can change over rdherence / egradat|on Chemical dosing
time to plastic . >'<
* Be aware that actual dose (media sinding {( @
concentration) may not equal
nominal (expected) concentration! fransportin & outof cell
* Best practice would be to measure Metabolism
media concentration; in reality,
rarely done

\° AFSA
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IVIVE: An extension of PBK

Culture medium delivers
chemical, like blood

Cultured cells respond to
chemical, like tissues

However, some key determinants Two approaches:
of dose ar? missing |.n vitro: 1. Engineering- Build system
* Metabolism (eg.lver) I with higher fidelty

* Clearance (e.g. kidney) 2. Computational models -

* Plasma proteins (e.g. albumin) predict system mathematically




HT-IVIVE: A simplified model for rapid prediction of oral
equivalent dose

* OED = estimated oral dose required to cause equivalent effect in humans in vivo as
observed in vitro

-~ Aka, administered equivalent dose (AED)

* Considers only the most pertinent kinetic processes affecting steady-state:

* Absorption
- Assume 100%, measure with Caco-2 cells

— QSAR models, in vitro metabolism assays
* Urinary clearance

> Glomerular filtration
® Serum binding

-~ Invitro assays




HT-IVIVE: A simplified model for rapid prediction of

oral equivalent dose

[Chemical] gy stae = DOSE rate * Body weight

(Clrenal i Clhepatic)

Cl = fu * GFR

renal —

fu*Cl. .,

Clh : =QL*
e Q + fu*Cly,

Cl_. = HPGL + V, *Cl

in vitro

Further reading: Rotroff DM, et al . 2010. Toxicol Sci. 117(2):348-58. PMID: 20639261

Assumptions:
100% oral bioavailability
* Linear kinetics (no saturation)

Definitions:

* Cl .y =renal clearance (L/hr)

*  Clpeparic = hepatic clearance (L/hr)

* Cl. . =intrinsic clearance (L/hr)

* GFR =glomerular filtration

* fu=fraction unbound in plasma

* Q, = hepatic blood flow (L/hr)

* HPGL = hepatocytes per gram liver
* V_ =liver volume (g)




IVIVE: In vitro data collection for HT-IVIVE

\

o — - —F

Human
Hepatocytes
(10 donor pool)

¥
|

Human
Plasma
(6 donor pool)

Hepatic
Clearance
In Vitro - In Vivo N
Extrapolation
Steady State
g Blood
e | Concentrations

Plasma Protein

Binding

Rotroff et al.,, 2010, Toxicol Sci.117(2):348-58. doi:
10.1093/toxsci/kfq220.

g
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IVIVE: Scaling in vitro measurements to in vivo
values

enzyme activity enzyme activity - nmol/min

o o pe e
SpeCIfIC activity = unit enzyme content unit enzyme content - mg protein

-> Specific activity = nmol/min/mg protein

* Total activity in the system =

total enzyme content

different t

> SCALING REQUIRED!

the system




IVIVE: Scaling in vitro measurements to in vivo values

in vitro

in vivo

Vmax or Clint in the

Scaling factors

SR System to whole liver
Microsomes nmol/mlr) MPPGL x Liver weight
/mg protein
Vmi
Cytosol nmo /m|r.1 CPPGL x Liver weight
/mg protein

—_—

Liver

nmol/min/g liver

Liver weight

Whole Body

nmol/min/whole liver

g
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IVIVE: Application Example
Interpreting high throughput in vitro screening data
* Rapid estimation of margin of * ldentification of chemicals with

exposure (MOE) from in vitro assays greater potential for human risk
(shown here for ToxCast screening)
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IVIVE: Limitations of HT-IVIVE

Assumptions made to simplify the * Active transport processes (active
process and allow rapid assessment uptake into liver/other tissues).
may not hold true for certain

* Complex clearance, transport, etc
chemicals, such as those with:

(e.g., reuptake in kidney,

* Slow clearance (e.g., coumarin) enterohepatic recirculation, lymph
* Biding in tissues distribution
* Extrahepatic metabolism * Fat accumulation (lipophilic)
* Bioactivation * Other routes of exposure
°* Etc.

See Yoon et al., Toxicology. 2015 Jun 5;332:1-3. doi: 10.1016/j.tox.2015.02.002. Epub 2015 Feb 11.




IVIVE: Quantitative (Q)-IVIVE

What is it? When do you use it?
More descriptive model that ® Exceptions to the simple HT-IVIVE
substitutes data for the less * Poorly metabolized compounds

-~ Systems for long term culture
* Active metabolites
-~ Solutions for metabolite ID
—~ Other approaches to metabolite activity in vitro
* Extra-hepatic metabolism
* Volatile compounds
—~ Inhalation
* Intestinal absorption
* Skin absorption

precise assumptions used in
HT-IVIVE




IVIVE: In vitro systems to support Q-IVIVE

* Organotypic models to collect parameters

-~ liver bioreactors to collect metabolism parameters for slowly
metabolized chemicals)

— modified Caco-2 cells with phenotypic transporters

—~ bioactivity assays with metabolic components (S9 fraction, flow
through hepatocytes to target cells)

* More complex IVIVE model with additional kinetic processes
-~ dermal absorption
-~ transporter function, etc.

See Yoon et al., Toxicology. 2015 Jun 5;332:1-3. doi: 10.1016/j.tox.2015.02.002. Epub 2015 Feb 11.




PBPK & IVIVE Application to Risk Assessment

Bringing chemical dosimetry and in vitro bioactivity together to inform risk assessments

Rat External Dose N Tissue Concentration Human External Dose

@
POD
1
I
I ED
1
i | -
dose Blood .

Animal studies PBK model PBK model

In Vitro Dose o Human External Dose

| e
POD External dose
|
I AC . vd .
1
| — | | A e

Liver

_ R gAFSA
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Next Generation Risk Assessment (NGRA) Framework

_____ —— = —— —_— == TIER2 = = =~
.- TIERO —\\ /’ TIER 1 ~ N / \\
\ | \ Il Bioactivity Refinement I
Problem formulation \ I In vitro Hazard l | I
I I Characterisation | I 3D Models |
Decision context Molecular Structure I | | | :
. . | l Receptor binding R I Internal Exposure :
Collate Existing Information I I l Refinement
I 1 Cell signalling I I
Literature In silico predictions | I _ l [ 7 vitae [ Fraries ] l
: | Gene expression I I
Initial MoA hypothesis _ —
| I Pathway Activity |\ Metabolite identification ,l
. . | ..
Exposure Estimation : | MoA Hypothesis I Initial POD g~ = == === - -7
Use scenario I I | Increased certainty
. e in PoD IVIVE
Local and systemic ¢ : | I Internal Exposure S nPoband
- onsumer Habits and g I
exposure estimates e I I (Dosimetry)
/ I I D .
Applied etermine .
pplied Dose / I ADME parameters ! — : Risk Assessment
N /’ I I Margin of — .
o S T - Plasma C,, Sufficient Conclusion
| Target Organs | > EXPOSU re data and
| | certainty
. ) | Systemic Bioavailability I
Exit TTC Exit Read Across \ (PBK) / High risk or Low risk
History of Safe Use S e e e e _ - conclusion based on
the margin of
‘ exposure calculations
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Next Generation Risk Assessment (NGRA) Framework

_____ —— o — —_— - ~ == TIER2 = = =~
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Problem formulation In vitro Hazard | | I
Characterisation ' I DS I
Decision context Molecular Structure l | A l
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Collate Existing Information ! Refinement
- Cell signalling
Literature In silico predictions In vitro kinetics

Gene expression

el oA ppetnasE Pathway Activity Metabolite identification
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exposure estimates Practices (Dosimetry)
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Target Organs > EXPOSU re data and

certainty

Systemic Bioavailability

Exit TTC Exit Read Across
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Thank You!

Allison Schafer Schafer.ae@pg.com
Rebecca Clewell rclewell@21stcenturytox.com

We value your feedback! As the AFSA Collaboration works to complete its free Master Class on
Animal-Free Cosmetic Safety Assessment, we would appreciate your input on what we’ve
developed so far and presented via this webinar preview series. Please take our FEEDBACK SURVEY



https://forms.office.com/r/kUgKXLg4pu

Definitions

ADME - absorption, disposition, metabolism, excretion - the
processes that determine internal dose of a chemical

Bioavailability - fraction of administered dose that enters systemic
circulation

Biodynamics - the formal study of vital forces, physiological
interactions and behaviors in living organisms. The study of the
effects of physical changes and mechanics on biological systems.

Biokinetics - the study of the metabolism and transport of drugs
(pharmacokinetics) or chemicals (toxicokinetics) through the body

-  Aka dosimetry, chemical disposition

Free concentration — concentration of chemical in blood that is not
bound to proteins

HPGL - hepatocytes per gram of liver
HT-IVIVE - high throughput IVIVE - simplified IVIVE model for rapid

estimation of in vivo dose with a minimum of measured parameters.

IVIVE - in vitro to in vivo extrapolation - the process of predicting in
vivo exposures from in vitro points of departure

PBK models - physiologically based kinetic models — models of chemical
kinetics that incorporate physiology of the system to allow scalability and
extrapolation

PBPK models - physiologically based pharmacokinetic models — same as
PBK models, except that the “pharma” may be thought to imply that
chemical has pharmaceutical properties (though PBPK is often used
generically for all types of chemicals)

PBTK models- physiologically based toxicokinetic models — same as PBK
models, except that the “toxic” may be thought to imply that chemical
has toxic properties

Point of departure - the dose required for a particular tissue to have an
effect

Q-IVIVE - quantitative IVIVE- generally used to describe an IVIVE model
that incorporates more complex process than the standard HT-IVIVE
approach in order to refine the estimate of in vivo dose

Tissue dose - the amount of chemical (in active form) that reaches the
target tissue.
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