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Our ambition

to eliminate animal studies without
compromising safety



* A view of the future of safety toxicology

* Developing in silico methods to support safety decisions
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A view of the future of safety toxicology
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Opportunities for In silico to support safety decisions

In silico Is sufficient and accepted
when making a safety decision

In silico identifies when a safety
study is needed

i

Decisions accepted without

animal studies

Regulators demand them ... but
we can reduce the animal burden
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Opportunities for In silico to support safety decisions

- - Negative prediction accepted from in silico
In silico is sufficient and accepted

when making a safety decision

Positive prediction accepted from in silico

In silico identifies when a safety In vitro + in silico sufficient to make a
study is needed ~decision

In silico to help reduce animal burden
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In silico can help reduce animal testing

* Better study design

e Single species submissions

e Use of historical data to select appropriate species, reduce study size...

Use of virtual control animals

ALTEX — Concept Article (Food for Thought)
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Introducing the Concept of Virtual Control Groups into Preclinical

Toxicology Testing
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In vitro + In silico = sufficient to make a decision
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P601 Updated Dermal Sensitization Thresholds Derived Using

_ _ an In Silico Expert System and an Expanded LLNA Dataset
Macmillan & Chilton, Red. Tox. and Pharmacol., 2019, 101, 35 Donna Macmillan 18th March, pm, Exhibit Hall



https://www.sciencedirect.com/science/article/abs/pii/S027323001830285X?via%3Dihub

Positive prediction accepted from in silico
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Negative prediction accepted from in silico
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It's difficult, but important, to make negative predictions.  Applicability domain: towards a more formal definition.
Williams. Reg. Toxicol. Pharmacol., 2016, 76, 79 Hanser SAR QSAR Environ Res., 2016, 27, 893



https://www.sciencedirect.com/science/article/abs/pii/S0273230016300083
http://www.tandfonline.com/doi/abs/10.1080/1062936X.2016.1250229?journalCode=gsar20

Machine learning with proprietary data

* Solving the problem of limited public datasets...

 Machine learning approach to harvest knowledge from proprietary data

e https://www.lhasalimited.org/products/Effiris.htm

o Late breaking poster P411, Thurs 08:30am-11:30am, 3595, T. Hanser

Avoiding hERG-liability in drug design via synergetic combinations
of different (Q)SAR methodologies and data sources: a case study
in an industrial setting

T. Hanser. J. Cheminf., 2019, 11, 9



https://www.lhasalimited.org/products/Effiris.htm
https://www.lhasalimited.org/publications/avoiding-herg-liability-in-drug-design-via-synergetic-combinations-of-different-qsar-methodologies-and-data-sources-a-case-study-in-an-industrial-setting/5233

AOPs to reduce the need for animal testing

* Linking assays and models through AOPs

* The Application of Adverse Outcome Pathways (AOPSs) for Risk Assessment
e 17" March, CC Room 205B, 9am-10am

(Kaptis archAo e Estrogen receptor (ER) binding leading to carcinogenicity Lhasa

type to search all aops... -

)

+| Cell signalling pathway dysregulation

(AQP) increase Cell proliferation assay = 1
eceptor (ER) cofactor binding assay -
Estrogen receptor (ER)-dependent gene translation assay " i
ID: KER1418 4
-
ID: KER1418
From: Estrogen receptor (ER) modulation
To: Cell signalling pathway dysregulation
Directness: Non-adjacent
Weight Of Evidence: Moderately For
Commentary:
This KER relates to the modulation of estrogen receptor (ER) activity, resulting in dysregulation of cell signalling pathways.
Activated plasma membrane ERs dimerise and rapidly induce transcriptional activation of enzymatic pathways following the binding of E2 [Moriarty et al 2006; Soltysik and Czekaj 2013].
Activated ER interacts with various signalling molecules and receptors to induce activity of increase their expression. Examples include, the epidermal growth factor receptor [Razandi et al 2003], insulin growth factor 1 receptor (IGF1R) [Song et al a Sa
2004], INK mitogen-activated protein kinase (MAPK) [Razandi et al 2000], phosphatidylinositol 3-kinase/prote-oncegens protein c-akt (PI3K/AKT) signalling pathway [Simoncini et al 2000; Simencini et al 2003] and protein kinase C (PKC) [Yang et 5§
20081 Limited
Alternatively, activated ER may increase the expression of endogencus ligands, such as vascular endothelial growth factor (VEGF) [Stoner et al 2004] or secondary messengers such as calcium [Jeng et al 2009] which activate their respective
-

sianalling pathwavs. The increase in intracellular calcium concentration is thouaht to increase the expression of prolactin which can further promote activation of the Janus kinase/sianal transducer and activator of transcription (JAK/STAT)



* In silico can play a critical part in risk assessment
* Reducing costs, animals and uncertainty
* This demands new approaches to machine learning and to defining uncertainty

* |hasa is investing in pre-competitive collaborations to address these challenges

* Come and see how you can work with us - Booth 828
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