

Exposure based safety assessment of cosmetics

Corie Ellison Global Product Stewardship Procter & Gamble

April 2020

Exposure assessment is the process of specifying the exposed population, identifying potential exposure routes, and measuring or estimating the magnitude, duration and frequency of exposure to a chemical.

Exposure is Based on Habits and Practices for the Product

Route of exposure

Body surface area and location

Exposure Algorithm Defines Data Needs

Local exposure (ug/cm2/day)

Human Safety

Ensuring Safe Products

P&G

Resources for H&P Data and Exposure assessment tools

Examples of External Data Sources

- National Health and Nutrition Examination Survey (NHANES)
- US EPA Exposure Factors Handbook
- ECETOC Human Exposure Assessment Tools Database (HEATDB)
 - Also contains list of external tools

https://www.rivm.nl/en/consumer-exposure-to-chemical-substances/exposure-models

- SCCS Notes of Guidance
- **RIVM Cosmetics Fact Sheet**

Product type	Estimated daily amount applied	Relative daily amount applied ¹	Retention factor ²	Calculated daily exposure	Calculated relative daily exposure ¹
	q _x	q _x	F _{ret}	E product	Eproduct
	(g/d)	(mg/kg bw/d)		(g/d)	(mg/kg bw/d)
Bathing, showering					
Shower gel	18.67	279.20	0.01	0.19	2.79
Hair care					
Shampoo	10.46	150.49	0.01	0.11	1.51
Hair styling products	4.00	57.40	0.10	0.40	5.74
Skin care					
Body lotion	7.82	123.20	1.00	7.82	123.20
Face cream	1.54	24.14	1.00	1.54	24.14
Hand cream	2.16	32.70	1.00	2.16	32.70

SCCS/1602/18

Deterministic vs Probabilistic Exposure Approaches

Deterministic vs Probabilistic Exposure Approaches

Deterministic

Pros

Less data intensive Easier to conduct and interpret Approach commonly accepted

Cons

Large amounts of information are overlooked

Point estimate is not necessarily the central tendency

Often based on (realistic) worst case

Probabilistic

Takes into account all information & scenarios in one go Provides an estimate of the probability Allows more refined risk decisions

More complex and resource intensive Risk management and decision making is more complex Draws focus to the (less likely) extremes of the distribution

Aggregate Exposure

Considers ALL sources of exposure to the chemical

- Other products marketed within a company (within and across product categories)
- Other products marketed by competitors (including those in other categories)
- Indirect exposures via environmental media

itegories) ries)

Tiered Aggregate Exposure

No further assessment needed

No further assessment needed

No further assessment needed

Internal Exposure

- Toxicity depends on the concentration of reactive species reaching target site
- Pharmacokinetics (PK) determines the internal exposure for a chemical
- An understanding of PK enables a better understanding of overall toxicological profile and risk assessment
- PK is an opportunity to refine a risk assessment

Figure A1: Schematic representation of some key elements of the MOA for the critical doseresponse relationship for a chemical.

Source: IPCS (2010) Characterization and application of physiologically based pharmacokinetic models in risk assessment

target site nical oxicological

Physiologically Based Kinetic (PBK) Modeling

Building Blocks of a PBK Model

Organism properties

Chemical properties

Anatomy & physiology

- Organ volumes
- Tissue composition
- Blood flow rates

Phys-chem

- Lipophilicity
- Molecular weight
- pKa/pKb

Exposure scenario

Administration

- Study design
- Dose
- Frequency

Chemical biological properties

- Plasma protein binding
- Metabolism
- Permeability
- Partition coefficients

Exposure route

Formulation

Summary

- Risk = Hazard x Exposure
- Exposure is an important part of a human safety risk assessment
- A tiered approach can be used for the exposure assessment, starting with conservative default assumptions and moving towards refined more realistic conditions
- Exposure calculations can estimate external and/or internal exposures
- "The dose makes the poison" *Parcelsus*

